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Abstract— In this article, we present a novel method for
decoupling surface electronic properties from topographic sur-
face variations in scanning tunneling microscope (STM). In a
conventional STM image, these surface properties are mixed,
and separating them is nontrivial. We perform closed-loop system
identification to obtain a dynamic model of the STM. We then
use this model in conjunction with a Kalman filter (KF) and
a disturbance observer to estimate surface conductivity, σ , and
surface variations, h, from the measurements obtained during a
scan. We experimentally verify this method by first performing
hydrogen depassivation lithography on a Si(100) − 2 × 1 : H pas-
sivated surface to demonstrate the effectiveness of our proposed
method in accurately estimating surface conductivity and surface
height variations.

Index Terms— Hydrogen depassivation lithography (HDL),
Kalman filter (KF) estimation, parameter estimation, state-space
modeling, surface conductivity (σ ), surface variations (h).

I. INTRODUCTION

A. Working Principle of the STM

DEVELOPMENT of the scanning tunneling microscope
(STM) significantly advanced the field of surface science,

providing unprecedented resolution at the atomic scale [1],
[2]. Owing to its exceptional spatial resolution, the STM has
become an indispensable tool for investigating surface topog-
raphy (imaging) [3], [4], manipulating the atomic structure
of surfaces (lithography) [5], [6], [7], and gaining insight on
surface electronic properties (spectroscopy) [8]. Much of our
understanding of the behavior of matter at the atomic scale is
due to the STM, making it a cornerstone of modern surface
science [9], [10].

The STM operates by bringing a sharp tip close to a
conductive surface and establishing a current between the two
objects due to the quantum mechanical phenomenon known as
tunneling [2], [11], [12]. The STM utilizes this phenomenon
to image the surface with atomic resolution. The distance
between the tip and the surface is typically within a few
angstroms, and a bias voltage is applied between the probe tip
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Fig. 1. Schematic of STM operating in constant-current mode. The tip
follows a raster pattern to scan the sample. The tip and sample is placed in a
UHV.

and the surface. This voltage causes electrons to tunnel across
the gap. The probability of tunneling decreases exponentially
as the distance between the two surfaces increases. By apply-
ing a positive voltage to the sample, electrons can tunnel from
the tip’s occupied states to the sample’s unoccupied states and
vice versa [8].

The primary mode of STM scanning is the constant-current
mode [13], as shown in Fig. 1. During a scan, the tunneling
current changes due to features such as variations in sur-
face topography or electronic structure. A feedback controller
maintains a constant tunneling current as the tip is scanned
across the surface by adjusting the tip–surface distance. The
control signal is plotted against the tip position to obtain a
3-D surface topography [11], [14], [15].

However, the resulting topography or controller output does
not necessarily represent the true topography of a surface
since, during a scan, the controller reacts to variations in
surface conductivity as well as surface variations. Variations
in surface conductivity are due to variations in the energy
barrier for tunneling electrons. A lower energy barrier means
more electrons can tunnel through, which means higher
conductivity and a higher tunneling current. Therefore, the
controller retracts the tip to maintain the set-point current [16].
Consequently, the STM topography image combines surface
variations and surface electronic features that are difficult to
separate.

1063-6536 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 27,2024 at 20:59:39 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0008-7181-4622
https://orcid.org/0000-0002-1225-4126


2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

B. Existing Methods for Estimation of Surface Parameters

Several methods have been proposed to determine sur-
face electronic properties. These techniques are generally
referred to as scanning tunneling spectroscopy (STS) [8], [17],
[18], [19].

When studying the electronic structure of a surface,
an important objective is to determine the density of states
for a specific location [20]. To do this, the feedback loop is
disabled, and the tip is held stationary over the surface; then,
the current I (V ) is measured as a function of the bias voltage,
while the voltage is ramped in both directions. Subsequently,
the voltage is returned to the value corresponding to the
constant-current imaging mode, and the feedback loop is
enabled. The slope of the resulting I –V curve, or d I/dV ,
provides information on the local density of states (LDOS).
Although this conventional spectroscopy method can be effec-
tive, it can also be time-consuming. Obtaining I –V spectra for
every pixel can take several hours, and the resulting images
are often degraded by lateral drift.

The spectroscopic mapping of a surface can be obtained
quickly by utilizing a feedback loop and adding a modulation
signal to the dc bias voltage at a constant tunneling current.
This technique allows for the acquisition of a d I/dV image
simultaneously with the topography image for a given dc
bias voltage. However, as noted in [21], this method has two
main drawbacks. First, the resulting images are likely to be
noisy due to the small amplitude of the modulation voltage.
Increasing the amplitude of the modulation voltage to obtain
a better signal-to-noise ratio may disrupt the feedback loop,
resulting in the degradation of the topography image. Second,
the I (V ) information at very low voltages cannot be accurately
captured since the tip–sample distance keeps changing, and the
tip may collide with the surface for small sample bias voltages
ranging from 0.1 to 1 V.

To address these issues, we proposed the use of notch
filters tuned to the harmonics of the fundamental modula-
tion frequency, while STM is operating in the spectroscopy
mode [21]. Thus, current components at multiples of the
modulation frequency are rejected, enabling the feedback loop
to operate undisturbed even as the amplitude of the modulation
voltage increases. This results in images with a higher signal-
to-noise ratio.

Another issue with conventional spectroscopy is that the
tip–sample distance constantly changes, making it challeng-
ing to capture I (V ) information at very small voltages.
We addressed this issue in a separate study [22] by closing
the feedback loop on the natural logarithm of differential
conductance, ln(d I/dV ), instead of the natural logarithm of
tunneling current. In this approach, the tip–sample distance
is regulated even when the applied sample dc bias voltage
is zero, allowing for information about the engagement of
electronic states for the full range of sample bias voltage. The
I –V curve can be obtained orders of magnitude faster than
the conventional spectroscopy method.

While these spectroscopic methods provide valuable infor-
mation on the electronic structure of a surface, they have
limitations in directly measuring the surface conductivity, σ .

The methods discussed in [21] and [22] are significantly faster
than the methods discussed in [8], [17], [18], and [19]. How-
ever, all these methods obtain the differential conductance,
d I/dV , which is considered as an approximate representation
of the surface conductivity, σ , since surface variations, h,
affect the d I/dV measurements obtained from a lock-in
amplifier (LIA). In addition, these methods do not provide a
direct means of distinguishing between the effects of electronic
and physical properties of the surface on the controller output.

C. Contributions of This Article

The contributions of this article are twofold. First, we intro-
duce a novel method for directly estimating surface conduc-
tivity, σ , from experimental measurements obtained during
constant-current STM at a specific sample bias voltage. This
approach is based on a Kalman filtering estimation technique
when process noise is modeled as colored noise as opposed
to white noise as in [23]. It turns out that colored process
noise modeling is more consistent with the physics of the
surface and the data obtained from regular STM imaging.
The second novel addition to the preliminary results dis-
cussed in [23] is employing a disturbance observer to estimate
surface variations that are otherwise difficult to differenti-
ate in the controller output as discussed in Section I-A.
To substantiate our observations from estimated surface
parameters, we have carried out hydrogen depassivation lithog-
raphy on a Si(100) − 2 × 1 : H passivated surface, as opposed
to the experimental results presented in [23]. To the authors’
knowledge, this is the first successful demonstration of how
surface electronic properties and topographic features can be
decoupled in STM.

In the remainder of this article, we briefly present the system
modeling and theoretical background of the work in Section II.
The proposed method based on the Kalman filtering estimation
technique is illustrated in Section III. We demonstrate the
experimental results in Section IV and conclude this article
in Section V.

II. CONTROL STRUCTURE AND THE STM PARAMETERS

In this section, we discuss the quantum mechanical phe-
nomena behind the tunneling current and various parameters
governing the tunneling current established between the sam-
ple and the tip. We also discuss a modification to the feedback
control system architecture, the identification of open-loop
STM plant dynamics, and the self-tuning proportional–integral
(PI) method required for modeling in this work.

A. Tunneling Current and the STM Parameters

When a bias voltage is applied to the sample, electrons
tunnel through the vacuum between the electrically grounded
sharp tip and the sample due to a quantum mechanical
phenomenon known as tunneling. This tunneling current, i ,
is directly proportional to the sample bias voltage and is highly
sensitive to the tip–sample distance. Under normal operating
conditions, the relationship between tunneling current and
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Fig. 2. Block diagram of the STM feedback loop in the constant-current mode. The controller command u is amplified by the high-voltage amplifier Gh ,
which drives the piezoactuator G p . As the tip is scanned across the surface, variations in surface topography appear as a disturbance h, causing a change
in the tunneling current. This change is regulated by the controller K (s) by adjusting the tip–surface gap, δ. The preamplifier with a gain of R converts the
sub-nanoampere range current to a measurable voltage. Here, n is the measurement noise and w = ln(Rσ Vb) is constant.

tip–sample gap is approximately exponential [2], [15], [24],
that is,

i = σ Vbe−1.025
√

ϕδ (1)

where Vb (in V), σ (in nA/V), δ (in nm), and ϕ (in eV) are
the bias voltage, the local density of states of the sample,
tip–sample distance (tip height), and the “work function”
or “local barrier height” (LBH), respectively. The quantum
tunneling phenomenon transforms the tip–sample separation,
δ, into a current, i . This sub-nanoampere range current is
converted to a measurable voltage using a preamplifier gain of
R. The natural logarithm of the transformed current linearizes
the nonlinear exponential dependence of tunneling current on
tip–sample distance (1) as

ln(Ri) = ln(Rσ Vb) − 1.025
√

ϕδ. (2)

The tunneling current, i , is a function of several parameters
described by (2). Understanding the implications of each
parameter on ln(Ri) is vital to the design of the STM control
system.

1) ln(Ri) and δ: The linear relationship between the
natural logarithm of the tunneling current, (ln(Ri)), and the
distance between the STM tip and the sample surface, δ,
have important implications on the control of the STM.
By utilizing a linear feedback system to maintain a constant
tunneling current, the STM can effectively “feel” the shape
of the sample surface and produce a high spatial resolution
topographic image.

2) ln(Ri) and ϕ: In addition to providing a high-resolution
topographic image of a sample surface, specifically, by mea-
suring the logarithmic derivative of the tunneling current with
respect to the tip–sample distance, one can obtain a measure
of the work function (ϕ) of the sample. The LBH or work
function is defined as the minimum energy required to remove
an electron from a solid surface. It represents the physical and
electronic properties of the sample surface

ϕ = 0.952
(

d
dδ

ln(Ri)
)2

. (3)

As the STM tip scans across the sample surface, the barrier
height can change due to variations in the physical and spatial
surface properties. Suppose that the tip encounters an atom on
the surface with a different chemical composition or electronic
structure than the surrounding atoms. In that case, the barrier
height may be higher or lower than the surrounding areas,
resulting in variations in the tunneling current. Also,

√
ϕ

contributes to the gain of the STM transfer function that the

controller regulates, as shown in Fig. 2. Therefore, this term in
the tunneling current equation becomes an essential parameter
for the estimation [16], [25], [26]. The accurate barrier height
estimation investigated in [16], [25], and [26] is one of the
highlights of STM control research.

3) ln(Ri) and σ : In (1), σ , which is known as surface con-
ductivity, depends on the electronic properties of the material
and changes from atom to atom on surfaces with defects,
adatoms, and buried dopants. Conventionally, to acquire local
density of states (LDOS) or differential conductance at a bias
voltage, Vb, the I –V curve is obtained by keeping the tip at a
fixed position and ramping the voltage in both directions [27].
For a small bias voltage, the first derivative of the total
tunneling current is proportional to the LDOS of the sample
surface [28]

d I
dV

∝ σ . (4)

Since the tip height tends to vary during a scan on surfaces
with many defects or buried dopants, d I/dV measurements
cannot accurately reflect spatial variations in σ . This param-
eter contributes to the total tunneling current, and thus, the
information it holds needs to be estimated as the tip scans the
surface.

B. Closed-Loop STM System Identification

In STM, closed-loop system identification is a crucial step in
implementing model-based advanced control techniques. This
process involves identifying the transfer function that relates
the control signal to the natural logarithm of the resulting
tunneling current, and it is performed while the feedback loop
is enabled in constant-current mode, as shown in Fig. 3.

The frequency response functions (FRFs) of the system
were obtained by adding exogenous inputs, re, to the error
signal, and ru to the controller output and then experimen-
tally determining the transfer functions as discussed in [29].
Specifically, four transfer functions were obtained through this
process

GreU ( jω) =
K ( jω)

(1 + K ( jω)G( jω))
(5)

GreY ( jω) =
K ( jω)G( jω)

(1 + K ( jω)G( jω))
(6)

GruU ( jω) =
1

(1 + K ( jω)G( jω))
(7)

Gru Y ( jω) =
G( jω)

(1 + K ( jω)G( jω))
. (8)
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Fig. 3. STM feedback loop for system identification. n, h, ln(Ri), ln(Rσ Vb), and yp represent sensor noise, surface variation, the set point, and log of
measured tunneling current, respectively. re and ru are the exogenous sinusoidal signals with varying frequency (in green), and output responses are U (s) and
Y (s) (in blue).

Fig. 4. Frequency response of the STM obtained through closed-loop system
identification. The measured FRF and estimated G(s) are shown. Since the
STM typically operates in a closed-loop bandwidth of 100 or 200 Hz, the fit
model adequately captures the plant dynamics over the frequency range of
interest.

The STM transfer function G(s) is obtained by dividing the
FRFs at each frequency point

G( jω) =
GreY ( jω)

GreU ( jω)
=

Gru Y ( jω)

GruU ( jω)
. (9)

We can experimentally characterize the STM and identify G(s)
while measuring and recording only two signals: the tunneling
current ln(Ri) obtained from transimpedance amplifier (sensor)
with gain R and the control signal u after digital computation,
as the feedback loop is enabled. The FRFs are measured when
the tip is engaged and the tunneling current establishes over
an atom on the surface. The transfer function G(s) captures
piezoactuator dynamics and effects of the current tunneling
phenomenon.

To obtain the closed-loop FRF of a home-built
STM, we conducted experiments using an ONOSOKKI
CF 9400 FFT analyzer. The FRFs were obtained by adding
a frequency sweep from 10 to 5000 Hz to the error signal.
We divided this frequency sweep range into three intervals
with different averaging and input sweep frequency amplitudes
to maintain a good signal-to-noise ratio in the low-frequency
range and prevent tip oscillation near the resonance frequency.

Once we obtained the STM’s FRF using the method pro-
posed in [29], we fit a transfer function, G(s), to obtain a
model as

G(s) =
−3.27 × 106s + 4.425 × 1010

s2 + 4.94 × 104s + 4.467 × 108 . (10)

Fig. 4 depicts the frequency response of the STM plant
and the Bode diagram of the estimated transfer function.
The STM generally operates with a closed-loop bandwidth
of 100–200 Hz and the presented model sufficiently captures
the low-frequency dynamics of the system that are relevant to
our estimation procedure. In [29], it has been established and
also observed in Fig. 2 that the dc gain of G(s) is∥∥G( jω)

∥∥
ω=0 = 1.025

√
ϕkhkp (11)

where kh is the dc gain of the high-voltage amplifier, Gh(s),
and is a constant. Also, kp is the dc gain of the piezoactuator
G p(s), which depends on the material properties and is,
therefore, a constant. Thus, any changes in the dc gain of the
STM are attributed to the change in the LBH of the surface,
i.e., ϕ.

In [29], we reported variations in the observed dc gain
ranging from 48 to 60 dB for the system used in these
experiments and a hydrogen-passivated silicon surface. Once
the PI controller parameters are fixed, variations in the LBH
can lead to system instability, resulting in a tip–sample crash.
To address this issue, a self-tuning adaptive method was
implemented in [29] to estimate changes in the LBH in real
time and compensate for these changes by adjusting the PI
gain. This method is discussed briefly in Section II-C as it is
vital for developing the estimation methodology in this article.

C. Self-Tuning Z-Axis Control System

We consider the simplified current model (1), which leads
to the STM control loop shown in Fig. 5 with a self-tuning PI
controller to compensate for LBH variations in [30]. For LBH
estimation, we add a high-frequency sinusoidal signal r( jω)

to the error signal as shown in Fig. 5 and then record the
responses at the output of the controller and the output of the
preamplifier, Y (s) and U (s), respectively. The frequency of the
modulating signal should be above the closed-loop bandwidth
of the system since the topography information lies in the
low-frequency region. Also, it should be carefully selected so
that it avoids exciting the system’s resonance frequencies. The
above procedure can be stated as

Y ( jω) =
K ( jω)G( jω)

1 + K ( jω)G( jω)
r( jω) (12)

U ( jω) =
K ( jω)

1 + K ( jω)G( jω)
r( jω). (13)

We are interested in the ω component of Y and U in the
given control arrangement. Therefore, the responses are passed
through the bandpass filter tuned at the ω frequency. The width
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Fig. 5. Z -axis control system block diagram with a self-tuning PI controller.

of the passband determines the LBH estimation bandwidth.
Then, these filtered signals are passed through a Lyapunov
filter [31] to estimate the magnitudes of the responses. Divid-
ing (12) by (13) yields G( jω), i.e.,

Y ( jω)

U ( jω)
= G( jω). (14)

The magnitude of G( jω) is proportional to LBH∥∥Y ( jω)
∥∥∥∥U ( jω)
∥∥ =

∥∥G( jω)
∥∥ ∝

∥∥G(0)
∥∥ ∝

√
ϕ. (15)

This study [25] demonstrates that the work function of
a Si(100) − 2 × 1 : H passivated surface changes as the tip
moves from a hydrogen (H) atom to a silicon (Si) atom, which
in turn affects the LBH. These changes in LBH affect the loop
gain of the STM control loop, which can cause instability in
the system.

To address this issue, the simplified model depicted in
Fig. 5 shows that as the dc gain of the system, represented
by G(s), changes due to the variable nature of LBH (shown
in blue arrow), the PI gain adapts (shown in blue arrow)
accordingly to prevent the tip from crashing into the surface.
The closed-loop system gain is kept constant by multiplying
the PI controller with α (LBH gain norm), which is tuned
to account for changes in LBH estimations. This makes the
STM Z -axis control self-tunable, ensuring stable and accurate
measurements. In Fig. 5

α =
Cref

Cest
. (16)

Also, the PI controller is defined as

K (s) = ki

(
1
s

+
1
ωc

)
(17)

where ki is the overall gain and ωc is the corner frequency.
The STM control loop depicted in Fig. 5 relies on the accu-

rate determination of Cref, which is obtained by modulating the
set point and recording the output signal d(ln I )/(dz) using
an LIA before the scanning process begins. The result of
this approach is shown in Fig. 6, where we observe LBH
varying from high to low over a 48 × 48 nm area of a

Si(100) − 2 × 1 : H passivated surface. In this type of surface,
the lithography area appears as a bright contrast, but in the
LBH image, the contrast is dark as the LBH is lower over
dangling bonds (missing H-atoms).

This variability in LBH challenges the stability of the
control loop, but the self-tuning PI controller implemented
in this system adjusts α to make the overall closed-loop
gain constant despite changes in LBH. This ensures that the
scanning process remains stable and accurate.

III. ESTIMATION OF SURFACE VARIATIONS AND
CONDUCTIVITY

In this section, we set up an augmented Kalman filter (KF)
to estimate surface conductivity, σ , which appears as an output
disturbance, ln(Rσ Vb), in Fig. 7. We will then integrate the
estimated output disturbance into a disturbance observer to
estimate surface height variations, h, which appear as an input
disturbance.

A. STM Modeling for Estimation

In the STM control system, depicted in Fig. 2, the natural
logarithm of the tunneling current is compared to the logarithm
of the reference current and the resulting error signal is
fed into a PI controller. The output of the controller drives
the Z -axis piezoactuator G p(s) via a high-voltage amplifier,
Gh(s), thereby maintaining a constant current by adjusting
the tip height. Here, h denotes the atomic surface height,
i.e., the actual surface topography. Scan speed is typically
selected so that most surface features fit within the closed-loop
bandwidth. Thus, h can be projected as the input disturbance,
hi to the plant, shown in Fig. 7. Note that G(s) is the combined
dynamics of all STM components in Fig. 2.

In STM, the control signal, u, is plotted as the topography
signal. However, it is clear from Fig. 2, and its simplified
version in Fig. 7, that the control signal encompasses changes
in the topography features, h, as well as electronic and
chemical properties of the surface (such as variations in σ

and ϕ). Furthermore, w = ln(Rσ Vb) is a component of the
tunneling current that arises from the electronic properties
due to the tip–sample interaction. Hence, w can be modeled
as the output disturbance to the states of the STM plant.
Previous studies [26] have assumed that ln(Rσ Vb) is constant,
as depicted in Fig. 2.

System identification experiments are performed, while the
tip is stationary with respect to the surface. This means that
the model does not capture the effect of LBH variations
that appear as a variable gain as the tip scans across the
surface [30]. The change in LBH is compensated by tuning
the PI gain in real time, based on LBH estimation discussed
in [25] and summarized above. Thus, the loop gain becomes
constant validating the LTI model of the STM as

ẋ p = Ax p + Buu + Buhc

y = C px p + w + n. (18)

The STM model, denoted as G(s) in (10), is characterized
by state variables, x p ∈ R(2×1), a state transition matrix,
A ∈ R(2×2), a control input matrix, Bu ∈ R(2×1), and a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 27,2024 at 20:59:39 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 6. Top and bottom rows, respectively, show the LBH image and the cross-sectional profile (over a horizontal line in the middle of the image) of a
Si(100) − 2 × 1 : H passivated surface. (a) Detrended topography. (b) LBH, i.e., Cest. (c) LBH gain norm, α. Spiral lithography has been performed on
Si(100) − 2 × 1 : H passivated surface to show variations in LBH as the tip moves from H-atom to Si atom.

Fig. 7. STM’s modified Z -axis control loop for Kalman Filtering modeling.
Here, n, hc , ln(Ri), ln(Rσ Vb), and yp represent sensor noise, projected surface
variation modeled as an input disturbance, the logarithm of tunneling current,
natural log of conductivity modeled as an output disturbance, and output of
the STM plant, respectively. L(s) is the shaping filter. In this scheme, the
LBH estimation and the self-tuning PI gain adaptation method run in the
background.

measurement matrix, C p ∈ R(1×2). The control input, u, and
sensor output, y, which represents the tunneling current, are
associated with the STM control. As illustrated in Fig. 7, the
output of the STM plant is represented by yp. However, it is
inaccessible and cannot be measured directly.

B. Estimation of ln(Rσ Vb)

The KF is a powerful tool for estimating the state of
linear stochastic dynamic systems based on observations,
a mathematical model of the system, and statistical information
about the process and measurement noise [32]. Successful
implementation of a KF requires access to a good model of the
process, which could be obtained through system identification
experiments. Kalman filtering has been applied to other types
of scanning probe microscopes in the past [33], [34].

In sequential KF estimation, the estimated states and their
associated uncertainties are propagated over time using an
error covariance matrix [32], [35], [36]. This covariance prop-
agation is used to monitor the convergence of the estimation.
Assume that a Gaussian noise process simplifies the posterior
estimation of states and results in an optimal estimator, making
it a valuable tool in various applications as discussed in [32],
[35], and [36].

Here, we discretize the STM model in (18) as

xk = Ak−1xk−1 + Buk−1 uk−1 + Buk−1 hck−1

yk = Ck xk−1 + wk + nk (19)

where hck ∼ N (0, Qhc) and nk ∼ N (0, R̃) denote process
and measurement noise with covariance matrix Qhc ∈ R and
R̃ ∈ R, respectively. Here, the process noise, hck , is modeled as
filtered white noise to capture the effects of surface height vari-
ations, h, such that the filtered noise remains Gaussian [37].
The shaping filter L(s), in Fig. 7, is a low-pass filter (LPF) that
considers the periodicity of dimer rows on the surface. This
approach provides a more accurate representation of the actual
noise while preserving the observability of the augmented
system.

It is worth noting that the power spectrum of the controller
output exhibits significant energy in the low-frequency region,
indicating the importance of modeling the noise as colored
rather than white.

The state-space model of LPF when discretized using the
Tustin method is

x fk+1 = A fk xk−1 + B fk hik

hck = C fk xk + D f hik . (20)
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Fig. 8. (a) Expected controller output as the tip scans the surface in STM. (b) Actual controller output due to electronic/physical properties of the surface
in constant-current mode.

To estimate the unknown disturbance, w, the state augmen-
tation technique is used [23], [32], [35], [36]. The unknown
disturbance w is regarded as a state variable and augmented
to the state vector as follows:

Xk =

 xk

wk

x fk

.

The unknown disturbance w is modeled as a constant affected
by a small artificial noise hw as

wk+1 = wk + hwk , where hwk ∼ N (0, Qw). (21)

The state augmentation process transforms a disturbance
estimation problem into a standard discrete-time KF. The
augmented state equation is driven by the process noise hik

and hwk . The augmented state-space model for the Kalman
filtering technique is shown as follows: xk+1

wk+1
x fk+1

 =

Ak 0 BkC fk

0 1 0
0 0 A fk


︸ ︷︷ ︸

Aaug

 xk

wk

x fk

 +

Buk

0
0


︸ ︷︷ ︸

Baug

uk

+

Buk D fk 0
0 1

B fk 0


︸ ︷︷ ︸

Gaug

[
hik

hwk

]

Yk =
[
Ck 1 0.

]︸ ︷︷ ︸
Caug

 xk

wk

x fk

 + nk .

With this augmented state vector, xk and wk are estimated
simultaneously using the KF algorithm, given that (Aaug, Caug)

is observable and (Aaug, Gaug) is controllable.
The prediction–correction steps in the KF algorithm can be

applied as follows.
1) Prediction Step:

a) A priori error covariance prediction

P−

k = Aaugk−1
P+

k−1 AT
augk−1

+ Gaugk−1
Qk−1GT

augk−1
. (22)

b) A priori state prediction

X̂−

k = Aaugk−1
X̂+

k−1 + Baugk−1
uk . (23)

2) Correction Step:
a) Kalman gain calculation

Kk = P−

k CT
augk

(
Caugk

P−

k CT
augk

+ Rk

)−1
. (24)

b) A posteriori error covariance calculation

P+

k = P−

k − KkCaugk
P−

k . (25)

c) A posteriori state calculation

X̂+

k = X̂−

k + Kk
(
Yk − Caugk

X̂−

k

)
. (26)

The subscript k is the sequence of time, and X̂ is an estimate
of both the states in X .

C. Estimation of Surface Height Variations, h

In Section II, we pointed out that the tunneling current,
i , is influenced by three surface parameters: LBH, surface
conductivity, σ , and surface features, h. A feedback controller
adjusts the distance between the tip and the sample to maintain
a constant current, as shown in Fig. 8(a). The controller
output, u, is then used to represent the surface topography.
However, this assumption is only correct as long as surface
electronic properties, captured by the output disturbance, w,
in Fig. 7, remain unchanged as the tip scans across the surface.
Otherwise, as illustrated in Fig. 8(b), the controller output may
not exactly map the surface features. Despite this, information
about the true surface topography does exist in the control
signal, providing an opportunity to estimate the actual surface
height variations from the overall system dynamics and the
measured current.

To estimate the surface variations, h, we design a distur-
bance observer [38], as depicted in Fig. 9. The estimated STM
plant model is denoted as Gn , and an LPF is applied with
a transfer function of Q. The input and output disturbances
to the plant are represented by hc and ln(Rσ Vb), respec-
tively. The estimate of the output disturbance is denoted as
ln(Rσ Vb)est.
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Fig. 9. Disturbance observer for estimating the surface variations, h, modeled
as hc .

The output of the plant can be expressed as follows:

y = Gn(u + hc) + ln(Rσ Vb)est. (27)

Equation (27) is reordered to estimate the surface variation
hcest entering the STM

hcest = G−1
n (y − ln(Rσ Vb)est) − u. (28)

The accuracy of the estimation of surface variation depends
on the accurate estimation of ln(Rσ Vb). Obtaining a good
estimate of surface conductivity, σ , relies on the modeling
of process noise. Therefore, in this article, we have modeled
process noise as colored noise, as opposed to results presented
in [23] based on the process noise modeled as white noise.

1) Working Principle of Disturbance Observer: Before
implementing the disturbance observer, it is necessary to find
the inverse of the estimated STM plant. However, this can be
challenging due to the nonminimum phase (NMP) zeros of the
plant. Several techniques have been proposed to deal with this
issue [39]. We use the zero-magnitude error tracking controller
(ZMETC) since it achieves unity gain at all frequencies. This
method amplifies high-frequency components. Hence, there is
a need to include an LPF, with unity gain at low frequencies,
to obtain the inverse of the plant.

The estimated plant model Gn(z) is represented by A(z),
which includes poles, and Bs(z) and Bu(z), which include
stable and unstable zeros of the system, respectively, that is,

Gn(z) =
B(z)
A(z)

=
Bs(z)Bu(z)

A(z)
. (29)

The unstable zeros Bu(z) are expressed as an nth-order poly-
nomial

Bu(z) = bun zn
+ bun−1 zn−1

+ . . . + bu0 (30)

where n is the number of NMP zeros. According to ZMETC,
the approximate inverse of G(z) can be obtained by reflecting
unstable zeros to stable poles with respect to the unit circle,
i.e., zui → 1/zui . Therefore, G̃n(z)−1 can be obtained as

G̃n(z)−1
=

A(z)
Bs(z)B∗

u (z)
(31)

where

B∗

u (z) = bu0 zn
+ bu1 zn−1

+ . . . + bun . (32)

In this disturbance observer, to suppress high-frequency noise
in measurements, an LPF is needed to fine-tune the open
loop for estimating the surface variations, h, as depicted

Fig. 10. Schematics of the experimental setup including STM, Zyvex Labs’
user interface Scanz and Zyvector control box. Also shown is the implemen-
tation of a discretized KF in MATLAB/Simulink using the experimentally
obtained data to estimate surface conductivity σ .

in Fig. 9. We select this LPF to be identical to ZMETC’s
Q(s). Typically, Q(s) is designed as 1/(ωls + 1), where
ωl is a tuning parameter that determines the level of dis-
turbance filtering. The cutoff frequency of the LPF, Q(s),
is ωl = 300Hz. The cutoff frequency was selected to reject
undesirable high-frequency noise. As the available information
suggests that disturbances and surface variations, h, only exist
in the low-frequency range, a 4th-order LPF with unity dc
gain is implemented as Q(s). Also, the 4th-order LPF was
selected to minimize the phase lag introduced by the filter
on the estimation. Q(s) is fine-tuned around the above values
iteratively to meet the desired performance. This LPF is then
discretized at 100 kHz.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
by imaging a Si(100) − 2 × 1 : H passivated surface with
an ultrahigh vacuum (UHV) STM and apply our approach
to estimate the surface conductivity, σ , and surface height
variations, h.

A. Experimental Setup

The experiments were performed on a Si(100) − 2 × 1 : H
passivated surface with a tungsten tip. The scanner is operated
in UHV at 10−11 torr and at room temperature. A Femto
DLPCA-200, low-noise current preamplifier with a gain of
109 and bandwidth of 1 kHz, measures the tunneling current.
The preamplifier output is sent back to the STM controller
for signal conditioning and then to the digital signal pro-
cessing (DSP) for digitization. Finally, the signal is returned
to the computer for image processing, as shown in Fig. 10.
The STM controller is implemented in a 20-bit DSP unit
TMS320C6713 running at 100 kHz. This sampling frequency
is used for recording signals and generating the image. The
Scanz1 software unit provides a graphical user interface to set
the scan parameters, controller gains, and mode of operation
of STM [40]. The two experiments were conducted in the
imaging mode on a different Si(100) − 2 × 1 : H passivated
surface at a sample bias voltage of −2.5 V with tunneling
current set points of 0.75 and 0.5 nA.

1Trademarked.
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TABLE I
PARAMETERS FOR EXPERIMENTAL SETUP

B. Results

A 24 ×24 nm area of a Si(100) − 2 × 1 : H passivated sur-
face is imaged at a resolution of 16 000×128 pixels. The LBH
estimation algorithm [25] and the self-tuning PI controller
method are implemented in Scanz. Table I shows the main
parameters used for imaging, LBH estimation, and controller
tuning in this experiment. The modulation frequency selected
for LBH estimation is 2 kHz, significantly larger than the
closed-loop system bandwidth. A topography image obtained
by Scanz and Zyvector1 from a Si(100) − 2 × 1 : H passivated
surface is shown in Fig. 11(a) and (b). The image is a plane
surface with dimers of hydrogen atoms (appearing as orange-
colored rows), bright spots (dangling bonds, i.e., missing
H-atoms), and dark spots (missing dimer rows). The surface
also includes irregular, brighter spots. The nature of these spots
is not clearly known, but they represent contamination. Two
separate experiments were conducted several days apart on two
different samples, with different tips and different tunneling
currents to implement our approach on different surface image
data. Lithography was performed to understand the estimation
of surface conductivity, σ , and surface variations, h, better.
The obtained images have a tilt (trend) moving downward as
the tip scans the surface line by line. The tilt in the surface
can be in both directions depending on the relative orientation
of the surface of Si(100) − 2 × 1 : H with respect to the tip.

Surface height variations, h, affect the tunneling current,
causing it to deviate from the set point. A PI controller
maintains a constant natural log of tunneling current by
adjusting the tip–sample separation, δ. Consequently, the
controller output, u, reflects the topography of the surface,
including any step edges or tilts. A KF estimator is designed to
account for stationary process noise caused by such variations.
The STM image obtained from Scanz is postprocessed in
MATLAB to remove the trend in the topography image
data, resulting in detrended topography data in displacement
units (in nm). These data are converted from control voltage
using a calibration factor of 540 nm/10 V, with 128 scan
lines containing 16 000 measurements obtained at sampling
intervals of 10 µs. The detrended topography data, along
with the natural logarithm of tunneling current, are fed as
inputs to the discretized KF model, which is implemented
in MATLAB/Simulink at a sampling frequency of 100 kHz.
To set the measurement noise covariance, denoted by R̃, the
variance (σ 2

R̃) of the signal ln(Ri) is used. This signal is
recorded using a dSPACE system and imported into MATLAB
to obtain the variance of measurement noise, with R̃ chosen

Fig. 11. Topography images of two different Si(100) − 2 × 1 : H passivated
surface as obtained from Scanz and Zyvector control before image processing.
Before imaging, spiral patterns of Si dangling bonds were generated by
desorbing hydrogen atoms from the surface. Sample bias voltage of −2.5 V
with a tunneling current set point of (a) 0.75 and (b) 0.5 nA. Profile line 1,
drawn over both the topography images, is represented in the images on the
right side.

as R̃1 = 0.04 and R̃2 = 0.12, respectively, for the first
and second experiments. The process noise covariance matrix,
Q, is the only tunable variable determining the estimation
bandwidth. To avoid noisy state estimations, Q is selected
as large as possible while still maintaining stability, with
Q1 = diag(10−5, 10−6) and Q2 = diag(10−5, 10−5). The dis-
cretized KF is then run sequentially in MATLAB to obtain an
estimate of ln(Rσ Vb) for every scan line. With the preamplifier
gain, R, and the sample bias voltage, Vb known, the estimate
of surface conductivity, σ , can be determined.

The detrended topography, tunneling current, LBH, esti-
mated surface conductivity, and surface variations (true
topography) are shown in Fig. 12(a)–(j) with their respective
profiles. Profile 1 is superimposed on the spiral lithography
and appears as a bright contrast in the first experiment,
as shown in Fig. 12(a), with the corresponding change in
the profile depicted as three peaks as it is drawn over three
lines of lithography. The tunneling current remains constant,
as expected, as shown in Fig. 12(b).

To confirm the accuracy of the surface conductivity, σ ,
estimation, an LBH image is also obtained. As described in
Section II, the LBH represents the minimum energy required
to remove an electron from the surface. From the image
in Fig. 12(c), we observe that the LBH is low over the
missing H-atoms (dangling bonds), resulting in the lithography
pattern appearing as a dark region. As anticipated, the surface
conductivity at this point is high since Si-atoms are more
reactive than H-atoms, as evident from the profile of the
estimated conductivity in Fig. 12(d). Once we have obtained
an estimate of ln(Rσ Vb), we utilize this estimation in a
disturbance observer as in (28) to estimate the surface height
variations, h. Fig. 12(e) shows that the estimation of surface
variation results in a dark contrast wherever an H-atom has
been removed. The topography profile exhibits troughs over
the lithography area. A noticeable difference is observed when
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Fig. 12. Images and profiles of lithography in a Si(100) − 2 × 1 : H passivated surface. (a) and (f) Detrended topography, (b) and (g) tunneling current,
(c) and (h) LBH, (d) and (i) estimated conductivity, and (e) and (j) estimated surface variations (true topography). Surface features to observe are circled in
(e) and (j) (in blue), and respective surface features are circled in profile (in red).

we compare the topography and surface variation images.
While the topography image displays the effects of surface
conductivity and surface variations, the surface variation image
clearly highlights the true surface topography.

The surface image obtained from the second experiment is
plotted in Fig. 11(b). The surface profile over line 1 is sketched

next to the topography image. The data obtained in this
experiment were significantly noisier than the first experiment,
as shown in Fig. 11(a). We followed the same procedure
we applied to the first set of experimental data. The effect
of higher noise levels is captured by the measurement noise
in (19). We again observe that LBH is low on a dangling bond
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[see Fig. 12(h)] and that the estimated surface conductivity, σ ,
is high on dangling bonds [see Fig. 12(i)]. These observations
are in agreement with those made based on the first experiment
data. The surface variation, h, estimation clearly shows the
missing H-atom as a drop in surface height of approximately
100 pm (inside red circle), which is the diameter of the
hydrogen atom [see Fig. 12(e) and (j)].

V. CONCLUSION

In conclusion, we presented a novel framework for esti-
mating surface conductivity, σ , and surface height variations,
h, in STM. Our approach uses a KF estimation technique
followed by a disturbance observer to decouple the effects
of surface variations from surface conductivity. By doing
so, we can obtain a more accurate estimation of the true
topography map of the surface, overcoming the limitations
of conventional STM where the controller output is affected
by surface variations and electronic properties. This is the
first successful demonstration of decoupling surface variations
and electronic properties in STM, making our approach a
significant contribution to the field. Our offline estimation
method is beneficial when several tips operate in parallel and
a large dataset is available for estimation. In [41] and [42],
we reported our efforts to fabricate active STM tips based
on MEMS technology. In the future, we aim to enable the
parallel operation of these MEMS-based STM tips. Compared
to conventional methods, which will require a dedicated LIA
per tip to obtain surface parameters, we can estimate surface
parameters without additional hardware based on this estima-
tion method. Overall, our framework provides a valuable tool
for understanding surface properties and their effects on STM
imaging.
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