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Abstract—We present a control scheme for video-rate4
atomic force microscopy with rosette pattern. The con-5
troller structure involves a feedback internal-model-based6
controller and a feedforward iterative learning controller.7
The iterative learning controller is designed to improve8
tracking performance of the feedback-controlled scanner9
by rejecting the repetitive disturbances arising from the10
system nonlinearities. We investigate the performance of11
two inversion techniques for constructing the learning filter.12
We conduct tracking experiments using a two-degree-of-13
freedom microelectromechanical system (MEMS) nanopo-14
sitioner at frame rates ranging from 5 to 20 frames per sec-15
ond. The results reveal that the algorithm converges rapidly16
and the iterative learning controller significantly reduces17
both the transient and steady-state tracking errors. We ac-18
quire and report a series of high-resolution time-lapsed19
video-rate AFM images with the rosette pattern.20

Index Terms—Internal model principle, iterative learn-21
ing control (ILC), microelectromechanical system (MEMS)22
nanopositioner, nonraster scanning, rosette pattern, video-23
rate atomic force microscopy (AFM).24

I. INTRODUCTION25

V IDEO-RATE atomic force microscopy (AFM) has enabled26

direct visualization of dynamic processes at extremely27

high resolutions [1]–[4]. Until recently, it could take up to several28

minutes to capture a high-resolution image with an AFM due to29

limitations arising from the highly resonant nature of AFMs and30

the conventional method of scanning, i.e., rastering. There have31

been significant research efforts aimed at improving the func-32

tionality of AFM for high-speed imaging [5]–[9]. In particular,33

nonraster scan patterns have been proposed to circumvent the34

drawbacks due to rastering by generating smooth trajectories35
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that are easier to navigate for a mechanical scanner. Although 36

nonraster scan patterns such as Lissajous [10], [11], spiral [12]– 37

[14], and cycloid [15], [16] have been successfully implemented, 38

more research is needed to establish their performance in video- 39

rate sequential imaging for applications that require capturing 40

continuous interactions with nanostructures [17]. 41

In sequential spiral and cycloid scans, back and forth motions 42

of the scanner impose sharp transitions at the periphery of 43

scan area, deteriorating the resulting AFM images [8], [16]. To 44

address common issues with sequential scanning AFM methods, 45

we recently proposed a novel nonraster method based on the 46

rosette pattern [18]. This repetitive pattern can be used to acquire 47

time-lapsed AFM images without the need for undesirable back 48

and forth motions of the positioner. 49

A number of control design techniques such as model pre- 50

dictive control [19], linear quadratic Gaussian control [20], 51

Kalman-filter-based control [21], and internal-model-based con- 52

trol [13] have been successfully applied to nonraster scanning 53

problems. In particular, promising results have been obtained 54

with the IMBC [10], [13], [16], [22]. This controller achieves 55

asymptotic zero steady-state tracking error by incorporating an 56

internal model of reference signals and disturbances. However, 57

this method requires accurate identification of disturbances, pre- 58

dominantly arising from unmodeled system nonlinearities [10], 59

[13], [16], [22]. Due to the sinusoidal nature of reference signals 60

in nonraster scan patterns, such disturbances typically contain 61

higher harmonics of reference frequencies. Consequently, the 62

controller needs to be redesigned when the reference frequency 63

is changed. 64

Employing a learning procedure enables us to eliminate the 65

effect of repeating disturbances without the need for perform- 66

ing a priori identification experiments and subsequent design 67

of a new controller. The method known as iterative learning 68

control (ILC) [23], [24] was initially proposed for dealing with 69

robotic systems that perform repetitive tasks. Recent research 70

has concentrated on improving the performance of such systems 71

and their applications to other systems that involve performing 72

repetitive tasks [25]–[30]. 73

More recently, ILC has found applications in lateral and 74

vertical nanopositioning for AFM [31]–[38]. In [31] and [32], 75

an iterative learning controller is designed for a piezo-based 76

positioner and applied to an AFM system to decrease the 77

tracking error arising from hysteresis and vibrations. In [33], a 78

current-cycle-feedback ILC is integrated with an H∞ feedback 79

controller and applied to the z-axis positioner of AFM to achieve 80

high-precision tracking of sample profiles. Integration of ILC 81
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Fig. 1. (a) Rosette pattern when R = 3µm, P = 250 nm and T = 0.2 s.
(b) and (c) Reference signals in x and y axes that generate the rosette
pattern in (a).

with model predictive control is reported in [36] to improve82

the convergence rate in z-axis control of AFM. For lateral83

scanning, Ling et al. [38] propose a control scheme consisting84

of an integral resonant control and a PID-type ILC to augment85

the damping of a piezo-actuated nanopositioner. The ILC and86

model-based H∞ control are combined in [39] to improve the87

quality of imaging in sinusoidal scanning at 80 Hz. In [37],88

the ILC is applied as an add-on control loop to enhance the89

performance of an existing PI controller for tracking an optimal90

spiral pattern at high frame rates.91

The rest of this article is organized as follows. Section II illus-92

trates sequential scanning with a novel nonraster scan pattern.93

In Section III, ILC-based control system is developed by inte-94

grating the ILC with an internal-model-based controller (IMBC)95

to achieve robustness against uncertainties and repetitive distur-96

bances. In Section IV, the efficacy of the proposed approach97

is experimentally investigated by applying to a two-degree-98

of-freedom (2-DOF) microelectromechanical system (MEMS)99

nanopositioner. Performing high-resolution video-rate AFM100

imaging with a novel nonraster scan pattern is presented in101

Section V, and Section VI concludes this article.102

To the best of the authors’ knowledge, this is the first success-103

ful application of ILC to video-rate nonraster AFM imaging.104

II. SEQUENTIAL SCANNING105

To implement sequential scanning, we employ the rosette106

pattern [18]. In this method, the nanopositioner traverses a107

circular-shaped area continuously without the need for back and108

forth motion required in conventional raster scanning. Fig. 1109

illustrates a rosette pattern and the corresponding reference110

signals consisting of the sum of two sinusoids with different111

frequencies but identical amplitudes. We can determine the112

amplitude and frequencies of the reference signals from the113

radius of the scan area (R), resolution (P ), and the scan period114

(T ). According to the design procedure described in [18], the115

number of petals in the rosette pattern is obtained as116

2N = Round

(
Rπ

P

)
. (1)

We select N as an even integer to ensure that the pattern117

would cover the entire scan area. For instance, the rosette pattern118

Fig. 2. (a) Rosette pattern generated from (4) starting at (x, y) =
(3, 0). (b) Rosette pattern generated from (7) starting at (x, y) = (0, 0).
The red dot (•) indicates the starting point.

in Fig. 1(a) consists of 38 overlapping petals intersecting each 119

other at several points. For larger values of N , the number of 120

petals increases, and high-resolution scanning is achieved. 121

Reference frequencies in a rosette pattern are determined from 122

f1 = (1 + n)f

f2 = (1 − n)f
(2)

where f is the fundamental scan frequency, and n is selected as 123

a rational number expressed by 124

n =
N

N + 1
, N ∈ {2, 4, . . . , 2 k, . . . }. (3)

Finally, the lateral axes of the nanopositioner are actuated by the 125

following references: 126

x(t) =
R

2
[cos(2πf1t) + cos(2πf2t)]

y(t) =
R

2
[sin(2πf1t) + sin(2πf2t)] .

(4)

From (2) and (4), the total scan time with the rosette pattern is 127

obtained as 128

T =
N + 1

f
. (5)

Fig. 1(b) and (c) depicts x(t) and y(t) for a rosette pattern 129

with R = 3μm, P = 250 nm, and T = 0.2 s. 130

To trace the rosette pattern, the starting point is at (x, y) = 131

(R, 0) according to (4). Then, the pattern repeats itself continu- 132

ously from that point on; see Fig. 2(a). Since the nanopositioner 133

rests at (x, y) = (0, 0) when in equilibrium, we need to move it 134

to the starting point each time it returns to the initial position. One 135

approach is to multiply the references with a trapezoidal signal 136

to move the positioner to the starting point linearly and decrease 137

the reference amplitude to zero after sequential scanning is 138

completed [40]. 139

An alternative is to take advantage of the rosette pattern’s 140

periodicity by adding a constant phase to the reference signals 141

in both axes to force the pattern to start at (x, y) = (0, 0), as 142

shown in Fig. 2(b). The phase shift is equivalent to the time 143

duration required for the rosette to traverse half of a petal. As 144

explained in [18], it takes 1
2nf (s) to draw a petal. Hence, the 145
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phase shift corresponding to half of this duration is obtained as146

φ1 =
π(1 + n)

2n
, φ2 =

π(1 − n)

2n
(6)

for the first and the second sinusoid in the reference signals.147

Consequently, reference signals that generate a rosette pattern148

starting at (x, y) = (0, 0) are149

x(t) =
R

2
[cos(2πf1t+ φ1) + cos(2πf2t+ φ2)]

y(t) =
R

2
[sin(2πf1t+ φ1) + sin(2πf2t+ φ2)] .

(7)

In this article, the nanopositioner is driven to follow the reference150

signals in (7) to scan a circular-shaped area with a diameter of151

6μm and a scan resolution of 50 nm at frame rates ranging152

from 5 to 20 fps. We employ the ILC method discussed in153

the following section combined with a feedback controller to154

improve the tracking performance of the nanopositioner.155

III. CONTROL DESIGN156

Although inversion based techniques are intuitive and can be157

easily implemented, their efficacy depends on the accuracy of158

the estimated plant dynamics. Iterative techniques such as ILC159

improve tracking in the presence of unmodeled system nonlin-160

earities through learning from past experiences. However, being161

an open-loop controller, the ILC cannot guarantee robustness162

against stochastic nonrepeating disturbances. This issue can be163

addressed by combining the ILC with a feedback controller.164

The feedback controller should be capable of tracking the ref-165

erence signals at high speed and, given the sinusoidal nature of166

those signals, it should be able to achieve this objective with167

low bandwidth. The internal-model-based controller (IMBC) is168

well-suited for this purpose. By limiting closed-loop bandwidth,169

this controller minimizes the effect of projected sensor noise on170

positioning resolution.171

Despite the many advantages of IMBC, this controller cannot172

deal with exogenous disturbances and system nonlinearities. To173

achieve robustness, a model of disturbances needs to be included174

in the feedback controller. This requires extensive experiments175

and typically results in a very high-order controller [13].176

In this section, we design the IMBC to track the fundamental177

frequencies of the reference signals and achieve acceptable178

performance and good stability margins. Then, we proceed to179

design the ILC and integrate it with IMBC. We investigate180

the convergence properties of this control scheme to ensure181

satisfactory results. The proposed control scheme is suitable for182

both single-frame and sequential AFM imaging.183

A. MEMS Nanopositioner184

To experimentally investigate the controller’s performance,185

we employ a 2-DOF MEMS nanopositioner whose design and186

characterization are described in detail in [5] and [41]. In this187

device, four electrostatic actuators move the stage bidirection-188

ally along its lateral axes and on-chip bulk piezoresistive sen-189

sors measure the stage displacement with nanoscale precision.190

Fig. 3. Frequency response of the nanopositioner from the actuation
voltage to sensor output in open loop, with the damping loop and the
estimated model of the damped system in (a) x axis and (b) y axis.

Sensor calibration factors are obtained as 0.2176 V/μm and 191

0.1958 V/μm for the x and y axes, respectively. 192

Frequency response of the scanner is measured by applying 193

a wide-band chirp signal and recording the sensor output using 194

a fast Fourier transform (FFT) analyzer. Fundamental resonant 195

frequencies of the scanner are at 3.34 kHz and 3.57 kHz for x 196

and y axes, respectively; see Fig. 3. As described in [16], [20], 197

and [21], we use an analog controller to add damping to this 198

highly resonant system resulting in a closed-loop bandwidth of 199

approximately 4.5 kHz. We then identify a dynamical model 200

of the damped system that is a good fit up to a bandwidth of 201

60 kHz; see Fig. 3. In order to design the ILC, the estimated 202

model is then discretized using a zero-order hold at a sampling 203

frequency of 90720 Hz. This results in a nonminimum phase 204

(NMP) model with a pair of complex zeros outside the unit circle 205

at 0.98 ± j3.25 and 0.54 ± j7.11 for x and y axes, respectively. 206

B. Internal-Model-Based Controller 207

According to the internal model principle, steady-state track- 208

ing error asymptotically tends to zero when the controller in- 209

cludes an internal model of the reference signals [42]. Knowing 210

the reference a priori, we can design the controller by includ- 211

ing roots of reference generating polynomial in the controller 212

denominator and tuning the gain and zeros to place closed-loop 213

poles at desirable locations in order to attain acceptable tracking 214

and stability margins. Since reference signals for rosette pattern 215

scanning consist of pure sinusoids, the controller must contain 216

pure imaginary poles at those reference frequencies. The control 217

loop for one axis is shown in Fig. 4(a) where Cd and C denote 218

the damping and internal-model-based controllers, respectively. 219

Taking Laplace transform of reference signals in (7) and assum- 220

ing a proper controller with pure imaginary poles at ±jω1 and 221

±jω2, we obtain 222

Cx =
a4 s

4 + a3 s
3 + a2 s

2 + a1s+ a0

(s2 + ω2
1)(s

2 + ω2
2)

Cy =
b4 s

4 + b3 s
3 + b2 s

2 + b1s+ b0

(s2 + ω2
1)(s

2 + ω2
2)

.

(8)

Polynomial coefficients in (8) are determined based on the 223

desired closed-loop poles and stability margins. We tune con- 224

troller zeros to set the magnitude of the closed-loop response to 225
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Fig. 4. (a) Control scheme with damping loop (Cd) and feedback con-
troller (C). (b) Control scheme with the combination of iterative learning
controller and feedback controller. The damped plant is modeled as Gd

and the projected unmodeled disturbance is denoted by dp. Here, L and
Q are the learning and robustness filters in ILC, and z−1 indicates a shift
in the iteration domain.

TABLE I
REFERENCE FREQUENCIES AND STABILITY MARGINS AT ALL FRAME RATES

unity at the desired reference frequencies. In Table I, we state226

the reference frequencies and stability margins for each frame227

rate. Simulated frequency responses of the x-axis closed-loop228

system at various frame rates are depicted in Fig. 5. The y-axis229

responses are similar. Although the closed-loop response at f1230

and f2 is set to unity, the peak at f2 is not as sharp as f1. This231

results in a short settling time for tracking of the slow sinusoid.232

Assuming linear dynamics for the damped nanopositioner,233

we can achieve approximately zero steady-state tracking error234

when the feedback controller includes the reference dynamics.235

In practice, however, the displacement is a nonlinear function236

of actuation due to the quadratic relationship between force and237

voltage in an electrostatic MEMS device [16], [22]. Moreover,238

minor asymmetries of the actuators due to the fabrication tol-239

erances can induce nonlinearities not captured in the system240

identification. Therefore, higher harmonics of both reference241

frequencies and their combinations lead to large tracking er-242

rors [13], [16]. In Fig. 4(a), d represents disturbances due to243

Fig. 5. Simulated frequency response of the closed-loop system with
the internal-model-based controller at different frame rates.

unmodeled dynamics and n denotes the sensor noise, which is 244

mainly originated from the piezoresistive elements, amplifiers, 245

and electric components of the readout circuit. 246

C. Iterative Learning Control 247

Iterative learning control utilizes information from past ex- 248

periments to update control action to achieve high-precision 249

tracking of the reference signal in presence of repeating dis- 250

turbances. We investigate convergence properties of the algo- 251

rithm and obtain a bound on the asymptotic tracking error. 252

We then design ILC filters that meet the convergence crite- 253

rion and minimize the ultimate tracking error. In our design, 254

we employ well-established inversion approximation methods 255

to implement the inversion-based learning filter. The control 256

scheme that integrates the ILC with the feedback controller is 257

depicted in Fig. 4(b). For the sake of simplicity, the damping 258

loop is substituted by the damped plant, Gd. For later analysis, 259

the unmodeled disturbance d is projected into the sensor output 260

as dp. That is 261

dp =
d

1 + Cd(z)G(z)
. (9)

We assume that disturbances are repeating and iteration in- 262

variant, and use the following update law [33], [34]: 263

uI,k+1 = Q(z)[uI,k + αL(z)ek], k ≥ 1 (10)

where uI,1 = 0, and L(z) and Q(z) are the learning and ro- 264

bustness filters, respectively. Here, α is the learning gain, and 265

uI,k and ek denote the ILC control input and the tracking error 266

at the kth iteration, respectively. The tracking results of the 267

kth iteration are available for the update law at the (k + 1)th 268

iteration. In this approach, uI,k+1 is calculated using (10) and 269

augmented to the feedback control input in the current iteration. 270

To guarantee convergence of the ILC algorithm in the iteration 271

domain, tracking error and control inputs must remain bounded 272
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in the presence of uncertainties. According to Fig. 4(b), we have273

ek+1 = yd − yk+1 − nk+1

uk+1 = uC,k+1 + uI,k+1

yk+1 = uk+1Gd(z) + dp.

(11)

For simplicity, we discard (z) in the following formulations. To274

analyze the effect of noise on the steady-state tracking error275

and convergence, we assume that measurement noise is varying276

through iterations and uniformly bounded at each iteration, i.e.,277

|nk| ≤ δ. Accordingly, the ILC algorithm converges if the ILC278

filters are designed such that279

|Q(1 − αLSGd)| < 1 (12)

and accordingly, the asymptotic error at convergence is bounded280

by281

e∞ = lim
k→∞

|ek| ≤ |S(1 −Q)|
1 − ρ

|yd − dp|

+
|αSQLSGd|

1 − ρ
|δ|+ |S||δ| (13)

where ρ = Q(1 − αLSGd) andS is the sensitivity function. For282

the proof and details; see Appendix.283

1) Design of Learning Filter L: A number of techniques have284

been proposed to design the learning filter [24]. According to285

(22), the learning filter is selected so that286

L = (SGd)
−1. (14)

Therefore, the algorithm converges in one iteration assuming287

Q = 1 and ignoring the effect of noise. The challenge with288

this technique is the NMP zeros of the plant. NMP zeros are289

inevitable when the plant is discretized at a certain sampling290

frequency or when the sensors and actuators are not collocated.291

To determine stable approximate inversion, well-established292

techniques such as NMP zeros ignore (NPZ-ignore), zero mag-293

nitude error tracking controller (ZMETC), and zero-phase error294

tracking controller (ZPETC) have been employed [43], [44].295

These techniques are straightforward and effective in achieving296

the desired tracking performance. The NPZ-ignore algorithm297

ignores a part of system dynamics and, hence, is less accurate298

than other methods. ZMETC and ZPETC approximate the effect299

of NMP zero by a stable zero and a stable pole, respectively. The300

type of the system, the location of NMP zeros, and the nature301

of the application determine the algorithm most suitable for the302

approximate inversion [43].303

Anticausal filtering [45] or stable inversion [44], [46] are304

alternatives to inverse approximation methods. They can sig-305

nificantly improve the tracking results. These approaches are306

based on partitioning the model into two parts consisting of307

the minimum-phase and NMP zeros. Inversion of the first part308

is straightforward. However, stable inverse of the second part is309

anticausal. To perform anticausal filtering, we can replace z with310

z−1 and apply the filter on the time-reversed input sequence.311

Here, we explore the performance of ZMETC and anticausal312

filtering approaches in designing the learning filter. To obtain L313

using ZMETC, we define H(z) = S(z)Gd(z), i.e. 314

H(z) =
Bs(z)Bu(z)

A(z)
(15)

where A(z) incorporates poles and Bs(z) and Bu(z) include 315

stable and unstable zeros, respectively. Since H(z) is a proper 316

transfer function, we omit the units of delay considered for 317

causal implementation. Here, Bu(z) is a polynomial writ- 318

ten as Bu(z) = bun
zn + bun−1z

n−1 + · · ·+ bu0 . According to 319

ZMETC, the approximate inverse of H(z) can be obtained by 320

reflecting unstable zeros to stable ones with respect to the unit 321

circle, i.e., zui
→ 1/zui

. Therefore, H̃−1(z) can be obtained as 322

H̃−1(z) =
A(z)

Bs(z)B�
u(z)

(16)

whereB�
u(z) = bu0z

n + bu1z
n−1 + · · ·+ bun

. Note that dc gain 323

adjustment is not required since the dc gain remains unchanged. 324

In anticausal filtering approach [45], H(z) can be factorized 325

into 326

H(z) = Hs(z)Hu(z) (17)

whereHs(z) andHu(z) contain the invertible and noninvertible 327

zeros, respectively. Accordingly, H−1
s (z) is stable and causal, 328

while H−1
u (z) is stable and anticausal. Since the ILC algorithm 329

is applied offline, and the tracking error is available from the 330

previous iteration, we may determine L by anticausal filtering 331

approach. From (10) and (17), we may write 332

wk(t) = H−1
s (z)ek(t) (18)

then, the anticausal filtering can be implemented by reversing 333

the sequence, wk(t), and applying the causal filter, i.e. 334

vk(t) = H−1
u (z−1)wk(N − t). (19)

Finally, the filtered output is obtained by reversing vk(t), i.e., 335

zk(t) = vk(N − t). Thus, the ILC control update law in (10) 336

can be rewritten as 337

uI,k+1(z) = Q(z)[uI,k(z) + αzk], k ≥ 1. (20)

The anticausal filtering method invertsSGd implicitly and deter- 338

mines the learning filter. Therefore, the ILC algorithm converges 339

fast and yields smaller tracking error in comparison with the 340

ZMETC, which suffers from approximation error. 341

2) Design of Robustness Filter Q: According to (13), track- 342

ing error approaches zero asymptotically if Q = 1 and |δ| ≈ 0. 343

In practice, however, |δ| �= 0 and theQ-filter is typically selected 344

as a low-pass filter to mitigate nonrepeating disturbances and 345

high-frequency noise. The cut-off frequency of Q, on the other 346

hand, should be large enough to include reference frequencies 347

and disturbances. In this case,Q can effectively minimize the de- 348

terministic component of the tracking error. It is clear from (13) 349

that in order to minimize the effect of disturbances and noise, 350

we must have |S(1 −Q)| < 1 and |SQ| < 1. This requires a 351

compromise in designing Q. As discussed in [47], the variance 352

of error at convergence is limited by the variance of iteration 353

varying noise and disturbances. The variance can be reduced by 354

selecting the learning gain as 0 < α ≤ 1. This will ensure that 355

the ILC algorithm will converge with a small tracking error in the 356
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Fig. 6. Magnitude of the low-pass Q-filter, |1 − LSGd| and
|Q(1 − LSGd)| when the ZMETC technique is employed to design the
learning filter for tracking the rosette pattern at 10 fps.

Fig. 7. Experimental setup consists of a MEMS nanopositioner inte-
grated into a commercial AFM. The inset shows the contact-mode can-
tilever landed on the gold features microfabricated on the scan table [18].

presence of iteration varying noise and disturbances. Decreasing357

the learning gain will also reduce the convergence rate.358

Here, a fourth-order Butterworth filter is used as the Q-filter.359

The bandwidth of the filter is selected as 5 kHz, 6.5 kHz, 8.5 kHz,360

and 11 kHz at 5 fps, 10 fps, 15 fps, and 20 fps, respectively.361

Accordingly, Q-filter ensures the stability and convergence of362

the ILC algorithm when the ZMETC technique is applied. As363

shown in Fig. 6, theQ-filter makes |1 − αLSGd| small at higher364

frequencies. To avoid any distortion in the output signal due to365

the phase shift imposed by the filter, a zero-phase filtering is366

employed using filtfilt(·) function in MATLAB.367

Since the filter bandwidth is large at high frame rates to en-368

compass higher harmonics, the tracking error may not decrease369

monotonically due to the high-frequency noise. To address this370

issue, α is set to 0.7 and 0.5 at 15 fps and 20 fps, respectively,371

and to unity at 5 fps and 10 fps.372

IV. EXPERIMENT373

To evaluate the performance of the proposed control scheme,374

we conducted tracking experiments at 5 fps, 10 fps, 15 fps, and375

20 fps using a feedback-controlled MEMS nanopositioner, as376

shown in Fig. 7. In this section, we present the experimental377

results and discuss the performance of two inversion techniques378

in tracking the rosette pattern.379

A. Implementation380

The closed-loop system is implemented in a dSPACE Micro-381

LabBox with a sampling frequency of 90720 Hz. The control382

signal is amplified to drive the lateral axes of the nanopositioner383

Fig. 8. Reference signals of rosette pattern at 5 fps after zero padding.

and the stage displacement is measured using the sensor output’s 384

voltage and predetermined calibration factors. To implement 385

the ILC, we require an interface to communicate between the 386

hardware and the software. ASAM XIL API is a standard utilized 387

in dSPACE to facilitate such communications. Specifically, we 388

used the XIL API model access port to gain access to the 389

SIMULINK model, write into the blocks, and capture signals. 390

We then used the XIL API. NET implementation as a high-level 391

program in a MATLAB script to implement the ILC algorithm, 392

and to read and manipulate the variables online. Initially, the 393

ILC control input is set to zero and the IMBC is employed 394

in the tracking experiment. Then, the experiment is continued 395

iteratively and the desired signals including the tracking error 396

are captured in each iteration to update the ILC control drive 397

signal. The experiment is performed for a specific number of 398

iterations to ensure the convergence of the ILC algorithm. We 399

allow for 15 iterations, although the algorithm converges very 400

fast in practice. 401

B. Tracking the Rosette Pattern 402

Since the damped plant is NMP, anticausal learning and filter- 403

ing may result in transients. To address this issue, we may extend 404

the reference signals by leading and trailing zeros, which we will 405

truncate at the end. The number of zeros Nz is determined such 406

that the imaging rate for single-frame scanning remains almost 407

unchanged. Note that no zero is added to intermediate frames 408

in sequential scanning. Consequently, the extended reference 409

signals, in a single-frame scan, are obtained as 410

xa(t), ya(t) =

⎧⎪⎨
⎪⎩

0 0 ≤ t ≤ Δ

x(t), y(t) Δ ≤ t ≤ T +Δ

0 T +Δ ≤ t ≤ T + 2Δ

(21)

whereΔ = Nzfs and fs is the sampling frequency. Based on the 411

expected transient time, we selectΔ = 1/f1 with f1 as described 412

by (2). This extends the scan time to T + 2Δ. Fig. 8 shows the 413

reference signals at 5 fps after zero-padding. In a single-frame 414

scanning, the scan time increases by 1%, which is negligible. 415

C. Experimental Results 416

Initially, we perform closed-loop experiments to track a single 417

frame of the rosette pattern generated by the reference signals in 418

(21). Fig. 9 shows the root-mean-square (RMS) value of tracking 419

error at each iteration and the close-up views indicate the track- 420

ing error at convergence. Note that the RMS value of error at the 421

first iteration is corresponding to the IMBC when the ILC is inac- 422

tive. We observe that the learning algorithm converges quickly, 423
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Fig. 9. RMS value of error at each iteration when the anticausal filtering approach (a) to (d) and ZMETC technique (e) to (h) have been employed
to determine the learning filter L at (a) and (e) 5 fps, (b) and (f) 10 fps, (c) and (g) 15 fps, (d) and (h) 20 fps.

TABLE II
RMS VALUE OF TRACKING ERROR INCLUDING THE

TRANSIENTS AT ALL FRAME RATES

and tracking error decreases monotonically through iterations424

with both inversion techniques. At low frame rates, the algorithm425

converges in less than three iterations, while it takes five to seven426

iterations for the tracking error to approach the asymptotic value427

at higher frame rates. It is clear that the learning rate is faster428

at 5 fps and 10 fps since α = 1. Fig. 9(a)–(d) describes a fast429

convergence rate with the anticausal filtering approach, whereas430

it takes slightly longer for the algorithm to converge using431

the ZMETC technique, particularly at higher frame rates; see432

Fig. 9(e)–(h). It appears that the accuracy of ZMETC degrades433

at 20 fps as the higher harmonics of the reference frequency lie434

beyond the bandwidth of the plant resulting in an approximation435

error. Since single-fame scanning is also performed here, we436

consider both the transient and steady-state errors in calculation437

of the RMS values. From experimental results, we observe that438

the combination of ILC with IMBC properly minimizes the439

transient and steady-state error at convergence.440

Table II presents the RMS value of tracking error with the441

proposed control scheme. We achieve 90% improvement with442

ILC using the anticausal filtering approach. Moreover, the RMS443

value of tracking error decreases to less than 0.1% of the scan di-444

ameter. Considering the fact that IMBC restricts the sensor noise445

and bounds the tracking error at the first iteration, integrating the446

ILC with the IMBC enhances the tracking performance.447

To evaluate the efficacy of the proposed control scheme in re-448

jecting the repetitive disturbances, we obtain FFT of the tracking449

error. Fig. 10 shows FFT of tracking error with anticausal filter-450

ing and ZMETC approaches at all frame rates. The closeup views451

reveal that the ILC precisely removes the higher harmonics not 452

compensated by the IMBC alone. Both inversion techniques 453

yield a good tracking performance, however, assuming identical 454

gains, the anticausal filtering approach outperforms ZMETC 455

at high frame rates; see Fig. 10(h). We observe that at 20 fps 456

fundamental harmonic at f1 has been removed satisfactorily, 457

however, the second harmonic at 7560 Hz is still dominant in 458

the error. 459

Fig. 11 depicts the time-domain results for single-frame track- 460

ing of the rosette pattern. Because of its effectiveness, here we 461

report the time-domain results with the anticausal filtering only. 462

Note that the padded zeros are truncated from the results. The 463

integration of ILC with IMBC leads to a visible improvement in 464

tracking. We also observe that IMBC leaves a steady-state error 465

in the y-axis when the ILC is off. Although the nanopositioner 466

dynamics are very similar in x and y axes, the y-axis closed-loop 467

system with IMBC cannot follow the low-frequency reference 468

signal in one scan period. Augmenting the tracking controller 469

with integral action may address the issue, but the ILC eliminates 470

the y-axis steady-state error successfully. 471

As illustrated in the close-up views of Fig. 11, a large peak 472

appears at the beginning and end of y-axis tracking error during 473

single-frame scans. This is due to the nonzero steady-state 474

tracking error and the backward–forward technique used to 475

implement the learning and robustness filters. To prevent the 476

peak of error from affecting single-frame scans, we provide a 477

priori learning using the pattern’s periodicity. We extend the 478

length of the reference signals by replacing T with T + 2ε in 479

(21). Here, ε is selected as 1/f1 to cover the transient duration. 480

In this case, the scan time for single-frame scanning increases 481

by less than 2%. In sequential scanning, consecutive frames 482

are not affected by the error peak meaning that the scan time 483

of successive frames remains unchanged. Therefore, the overall 484

scan time will be Tf = NfT + 2Δ+ 2ε, where Nf is the total 485

number of frames. 486

Steady-state tracking errors in Table III allows us to compare 487

the performance of proposed control structure with the IMBC 488

during sequential rosette scan assuming that the transient re- 489

sponse is disappeared. Combined ILC/IMBC reduces the peak 490

to peak value of steady-state error by 50% and keeping it below 491
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Fig. 10. FFT of tracking error with IMBC and the combination of ILC and IMBC when the anticausal filtering approach (a) to (d) and ZMETC
technique (e) to (h) are employed to determine the learning filter (L) at 5 fps, 10 fps, 15 fps, and 20 fps.

Fig. 11. Time-domain tracking results of single-frame scan at (a) 5 fps, (b) 10 fps, (c) 15 fps, and (d) 20 fps when the anticausal filtering approach
is employed to determine the learning filter.
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Fig. 12. Reference and actual rosette trajectory at (a) 5 fps, (b) 10 fps, (c) 15 fps, and (d) 20 fps.

TABLE III
RMS VALUE OF STEADY-STATE TRACKING ERROR AT ALL FRAME RATES

20 nm. In addition, this method improves the x- and y-axis492

tracking errors by more than 27% and 79%, respectively.493

As discussed in Section III-C, RMS value of tracking er-494

ror at convergence is bounded by iteration varying noise and495

disturbances. According to (13), e∞ ≤ 2|S||δ| if Q = 1, and496

L = (SGd)
−1. Therefore, asymptotic error relies on the sensor497

output noise fed back to the system. Since IMBC attenuates the498

high-frequency projected noise, the upper bound on the ultimate499

error determines the resolution of the displacement sensors. To500

obtain sensor resolution in open loop and under damping, we501

recorded sensor output noise for 60 s at a sampling frequency of502

62.5 kHz with an antialiasing filter (Stanford Research SR650503

low-noise filter) with a cut-off frequency of 15 kHz being used504

in the path. To reject noise and electrical disturbances, the505

experiment was performed in a closed metal box. Open-loop506

RMS value of noise is 2 nm, with the actuators electrically507

grounded, and it is about 3 nm with the damping loop being508

active. Asymptotic error obtained with the anticausal filtering509

approach is bounded by about 4 nm, which is close to the sensor510

noise floor.511

The rosette trajectory and the actual displacement of the stage512

tracing the rosette pattern are depicted in Fig. 12. Close-up views513

validate the tracking performance at all frame rates when the ILC514

is integrated with the internal-model-based controller.515

V. AFM IMAGING516

To implement rosette scanning with the proposed control517

scheme, we used an AFMWorkshop TT-AFM. We mounted518

an MEMS nanopositioner on the AFM 3-DOF positioning519

mechanism. The MEMS device serves as the scanner in the520

Fig. 13. 3-D AFM images acquired with rosette-scan at (a) 5 fps, (b)
10 fps, (c) 15 fps, and (d) 20 fps on a window size with a diameter of
6µm.

experiments reported here. As indicated in the inset of Fig. 7, 521

the periodic gold features fabricated on the scan table of the 522

MEMS nanopositioner were used as the sample. Dimensions of 523

the gratings is 4 × 4 × 0.5μm3 with a pitch of 3μm [5]. Due to 524

the low z-axis bandwidth of the commercial AFM’s positioner, 525

we performed the experiments in constant-height contact mode. 526

We used a contact-mode cantilever with a resonance frequency 527

of about 27.8 kHz and stiffness of 0.25 N/m. When the cantilever 528

was landed on the MEMS scan table, we closed the control loop 529

and activated the iterative learning algorithm. X and Y sensor 530

outputs and cantilever deflection were recorded simultaneously 531

to construct 3-D AFM images. Fig. 13 depicts a single-frame of 532

rosette scan at frame rates ranging from 5 to 20 fps, indicating 533

that AFM images have precisely captured the structure of a gold 534

feature. 535

We also performed sequential scanning at video rate. To 536

imitate a dynamic process, the AFM positioner was made to 537

raster at 0.2 Hz over a window size of 6 × 6μm2 while the 538

MEMS nanopositioner was following the rosette pattern at 20 fps 539

in a scan area with a diameter of 6μm. Fig. 14 illustrates a series 540

of AFM time-lapsed images that capture the gold feature moving 541

slowly under the cantilever. 542
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Fig. 14. Series of rosette-scan frames at 20 fps captured in constant-
height contact mode on a window size with a diameter of 6µm.

VI. CONCLUSION543

We demonstrate video-rate rosette scanning by combining544

an internal-model-based controller with an iterative learning545

controller. The feedback controller contains an internal model546

of the reference signals and limits the closed-loop bandwidth547

to bound the tracking error when the ILC is OFF. The ILC is548

used to mitigate induced disturbances originating from inherent549

system nonlinearities. The model-based ILC is designed using550

well-established inversion techniques. The experimental results551

validate the efficacy of the control scheme in reducing transient552

and steady-state tracking errors at several frame rates. We show553

that this control scheme is suitable for both sequential and554

single-frame scanning. We acquire successive AFM images of555

slowly moving gold features at 20 fps in constant-height contact556

mode. In future works, we will implement the scanning experi-557

ment in constant-force contact mode and tapping mode using a558

high-bandwidth z-axis positioner.559

APPENDIX560

According to (11), the tracking error in the (k + 1)th iteration561

can be described as562

ek+1 = Q(1 − αLSGd)ek + S(1 −Q)(yd − dp)

+ SQnk − Snk+1. (22)

Proceeding through iterations, we can derive the relationship563

between ek+1 and e1 as564

ek+1 = ρke1 +

k−1∑
i=0

S(1 −Q)(yd − dp)ρ
i

+

k−1∑
i=0

SQρink−i −
k−1∑
i=0

Sρink+1−i

(23)

where ρ = Q(1 − αLSGd). By changing the index variable, 565

the last two terms can be combined into one, hence, (23) can be 566

simplified to 567

ek+1 = ρke1 + S(1 −Q)(yd − dp)
k−1∑
i=0

ρi

+ SQLSGd

k−1∑
i=0

ρink−i − Snk+1 + ρkn1.

(24)

Assuming |nk| ≤ δ, the upper bound on ek+1 is obtained as 568

|ek+1| ≤ |ρ|k|e1|+ |S(1 −Q)||yd − dp|
k−1∑
i=0

|ρ|i

+ |SQLSGd|
k−1∑
i=0

|ρ|i|δ| − |S||δ|+ |ρ|k|δ|.
(25)

Since the feedback controller is designed to keep the tracking 569

error small at the first iteration, |e1| is bounded. As a result, (25) 570

implies that the asymptotic error is bounded when k → ∞ if 571

|ρ| < 1. 572
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Abstract—We present a control scheme for video-rate4
atomic force microscopy with rosette pattern. The con-5
troller structure involves a feedback internal-model-based6
controller and a feedforward iterative learning controller.7
The iterative learning controller is designed to improve8
tracking performance of the feedback-controlled scanner9
by rejecting the repetitive disturbances arising from the10
system nonlinearities. We investigate the performance of11
two inversion techniques for constructing the learning filter.12
We conduct tracking experiments using a two-degree-of-13
freedom microelectromechanical system (MEMS) nanopo-14
sitioner at frame rates ranging from 5 to 20 frames per sec-15
ond. The results reveal that the algorithm converges rapidly16
and the iterative learning controller significantly reduces17
both the transient and steady-state tracking errors. We ac-18
quire and report a series of high-resolution time-lapsed19
video-rate AFM images with the rosette pattern.20

Index Terms—Internal model principle, iterative learn-21
ing control (ILC), microelectromechanical system (MEMS)22
nanopositioner, nonraster scanning, rosette pattern, video-23
rate atomic force microscopy (AFM).24

I. INTRODUCTION25

V IDEO-RATE atomic force microscopy (AFM) has enabled26

direct visualization of dynamic processes at extremely27

high resolutions [1]–[4]. Until recently, it could take up to several28

minutes to capture a high-resolution image with an AFM due to29

limitations arising from the highly resonant nature of AFMs and30

the conventional method of scanning, i.e., rastering. There have31

been significant research efforts aimed at improving the func-32

tionality of AFM for high-speed imaging [5]–[9]. In particular,33

nonraster scan patterns have been proposed to circumvent the34

drawbacks due to rastering by generating smooth trajectories35
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that are easier to navigate for a mechanical scanner. Although 36

nonraster scan patterns such as Lissajous [10], [11], spiral [12]– 37

[14], and cycloid [15], [16] have been successfully implemented, 38

more research is needed to establish their performance in video- 39

rate sequential imaging for applications that require capturing 40

continuous interactions with nanostructures [17]. 41

In sequential spiral and cycloid scans, back and forth motions 42

of the scanner impose sharp transitions at the periphery of 43

scan area, deteriorating the resulting AFM images [8], [16]. To 44

address common issues with sequential scanning AFM methods, 45

we recently proposed a novel nonraster method based on the 46

rosette pattern [18]. This repetitive pattern can be used to acquire 47

time-lapsed AFM images without the need for undesirable back 48

and forth motions of the positioner. 49

A number of control design techniques such as model pre- 50

dictive control [19], linear quadratic Gaussian control [20], 51

Kalman-filter-based control [21], and internal-model-based con- 52

trol [13] have been successfully applied to nonraster scanning 53

problems. In particular, promising results have been obtained 54

with the IMBC [10], [13], [16], [22]. This controller achieves 55

asymptotic zero steady-state tracking error by incorporating an 56

internal model of reference signals and disturbances. However, 57

this method requires accurate identification of disturbances, pre- 58

dominantly arising from unmodeled system nonlinearities [10], 59

[13], [16], [22]. Due to the sinusoidal nature of reference signals 60

in nonraster scan patterns, such disturbances typically contain 61

higher harmonics of reference frequencies. Consequently, the 62

controller needs to be redesigned when the reference frequency 63

is changed. 64

Employing a learning procedure enables us to eliminate the 65

effect of repeating disturbances without the need for perform- 66

ing a priori identification experiments and subsequent design 67

of a new controller. The method known as iterative learning 68

control (ILC) [23], [24] was initially proposed for dealing with 69

robotic systems that perform repetitive tasks. Recent research 70

has concentrated on improving the performance of such systems 71

and their applications to other systems that involve performing 72

repetitive tasks [25]–[30]. 73

More recently, ILC has found applications in lateral and 74

vertical nanopositioning for AFM [31]–[38]. In [31] and [32], 75

an iterative learning controller is designed for a piezo-based 76

positioner and applied to an AFM system to decrease the 77

tracking error arising from hysteresis and vibrations. In [33], a 78

current-cycle-feedback ILC is integrated with an H∞ feedback 79

controller and applied to the z-axis positioner of AFM to achieve 80

high-precision tracking of sample profiles. Integration of ILC 81

1083-4435 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 1. (a) Rosette pattern when R = 3µm, P = 250 nm and T = 0.2 s.
(b) and (c) Reference signals in x and y axes that generate the rosette
pattern in (a).

with model predictive control is reported in [36] to improve82

the convergence rate in z-axis control of AFM. For lateral83

scanning, Ling et al. [38] propose a control scheme consisting84

of an integral resonant control and a PID-type ILC to augment85

the damping of a piezo-actuated nanopositioner. The ILC and86

model-based H∞ control are combined in [39] to improve the87

quality of imaging in sinusoidal scanning at 80 Hz. In [37],88

the ILC is applied as an add-on control loop to enhance the89

performance of an existing PI controller for tracking an optimal90

spiral pattern at high frame rates.91

The rest of this article is organized as follows. Section II illus-92

trates sequential scanning with a novel nonraster scan pattern.93

In Section III, ILC-based control system is developed by inte-94

grating the ILC with an internal-model-based controller (IMBC)95

to achieve robustness against uncertainties and repetitive distur-96

bances. In Section IV, the efficacy of the proposed approach97

is experimentally investigated by applying to a two-degree-98

of-freedom (2-DOF) microelectromechanical system (MEMS)99

nanopositioner. Performing high-resolution video-rate AFM100

imaging with a novel nonraster scan pattern is presented in101

Section V, and Section VI concludes this article.102

To the best of the authors’ knowledge, this is the first success-103

ful application of ILC to video-rate nonraster AFM imaging.104

II. SEQUENTIAL SCANNING105

To implement sequential scanning, we employ the rosette106

pattern [18]. In this method, the nanopositioner traverses a107

circular-shaped area continuously without the need for back and108

forth motion required in conventional raster scanning. Fig. 1109

illustrates a rosette pattern and the corresponding reference110

signals consisting of the sum of two sinusoids with different111

frequencies but identical amplitudes. We can determine the112

amplitude and frequencies of the reference signals from the113

radius of the scan area (R), resolution (P ), and the scan period114

(T ). According to the design procedure described in [18], the115

number of petals in the rosette pattern is obtained as116

2N = Round

(
Rπ

P

)
. (1)

We select N as an even integer to ensure that the pattern117

would cover the entire scan area. For instance, the rosette pattern118

Fig. 2. (a) Rosette pattern generated from (4) starting at (x, y) =
(3, 0). (b) Rosette pattern generated from (7) starting at (x, y) = (0, 0).
The red dot (•) indicates the starting point.

in Fig. 1(a) consists of 38 overlapping petals intersecting each 119

other at several points. For larger values of N , the number of 120

petals increases, and high-resolution scanning is achieved. 121

Reference frequencies in a rosette pattern are determined from 122

f1 = (1 + n)f

f2 = (1 − n)f
(2)

where f is the fundamental scan frequency, and n is selected as 123

a rational number expressed by 124

n =
N

N + 1
, N ∈ {2, 4, . . . , 2 k, . . . }. (3)

Finally, the lateral axes of the nanopositioner are actuated by the 125

following references: 126

x(t) =
R

2
[cos(2πf1t) + cos(2πf2t)]

y(t) =
R

2
[sin(2πf1t) + sin(2πf2t)] .

(4)

From (2) and (4), the total scan time with the rosette pattern is 127

obtained as 128

T =
N + 1

f
. (5)

Fig. 1(b) and (c) depicts x(t) and y(t) for a rosette pattern 129

with R = 3μm, P = 250 nm, and T = 0.2 s. 130

To trace the rosette pattern, the starting point is at (x, y) = 131

(R, 0) according to (4). Then, the pattern repeats itself continu- 132

ously from that point on; see Fig. 2(a). Since the nanopositioner 133

rests at (x, y) = (0, 0) when in equilibrium, we need to move it 134

to the starting point each time it returns to the initial position. One 135

approach is to multiply the references with a trapezoidal signal 136

to move the positioner to the starting point linearly and decrease 137

the reference amplitude to zero after sequential scanning is 138

completed [40]. 139

An alternative is to take advantage of the rosette pattern’s 140

periodicity by adding a constant phase to the reference signals 141

in both axes to force the pattern to start at (x, y) = (0, 0), as 142

shown in Fig. 2(b). The phase shift is equivalent to the time 143

duration required for the rosette to traverse half of a petal. As 144

explained in [18], it takes 1
2nf (s) to draw a petal. Hence, the 145
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phase shift corresponding to half of this duration is obtained as146

φ1 =
π(1 + n)

2n
, φ2 =

π(1 − n)

2n
(6)

for the first and the second sinusoid in the reference signals.147

Consequently, reference signals that generate a rosette pattern148

starting at (x, y) = (0, 0) are149

x(t) =
R

2
[cos(2πf1t+ φ1) + cos(2πf2t+ φ2)]

y(t) =
R

2
[sin(2πf1t+ φ1) + sin(2πf2t+ φ2)] .

(7)

In this article, the nanopositioner is driven to follow the reference150

signals in (7) to scan a circular-shaped area with a diameter of151

6μm and a scan resolution of 50 nm at frame rates ranging152

from 5 to 20 fps. We employ the ILC method discussed in153

the following section combined with a feedback controller to154

improve the tracking performance of the nanopositioner.155

III. CONTROL DESIGN156

Although inversion based techniques are intuitive and can be157

easily implemented, their efficacy depends on the accuracy of158

the estimated plant dynamics. Iterative techniques such as ILC159

improve tracking in the presence of unmodeled system nonlin-160

earities through learning from past experiences. However, being161

an open-loop controller, the ILC cannot guarantee robustness162

against stochastic nonrepeating disturbances. This issue can be163

addressed by combining the ILC with a feedback controller.164

The feedback controller should be capable of tracking the ref-165

erence signals at high speed and, given the sinusoidal nature of166

those signals, it should be able to achieve this objective with167

low bandwidth. The internal-model-based controller (IMBC) is168

well-suited for this purpose. By limiting closed-loop bandwidth,169

this controller minimizes the effect of projected sensor noise on170

positioning resolution.171

Despite the many advantages of IMBC, this controller cannot172

deal with exogenous disturbances and system nonlinearities. To173

achieve robustness, a model of disturbances needs to be included174

in the feedback controller. This requires extensive experiments175

and typically results in a very high-order controller [13].176

In this section, we design the IMBC to track the fundamental177

frequencies of the reference signals and achieve acceptable178

performance and good stability margins. Then, we proceed to179

design the ILC and integrate it with IMBC. We investigate180

the convergence properties of this control scheme to ensure181

satisfactory results. The proposed control scheme is suitable for182

both single-frame and sequential AFM imaging.183

A. MEMS Nanopositioner184

To experimentally investigate the controller’s performance,185

we employ a 2-DOF MEMS nanopositioner whose design and186

characterization are described in detail in [5] and [41]. In this187

device, four electrostatic actuators move the stage bidirection-188

ally along its lateral axes and on-chip bulk piezoresistive sen-189

sors measure the stage displacement with nanoscale precision.190

Fig. 3. Frequency response of the nanopositioner from the actuation
voltage to sensor output in open loop, with the damping loop and the
estimated model of the damped system in (a) x axis and (b) y axis.

Sensor calibration factors are obtained as 0.2176 V/μm and 191

0.1958 V/μm for the x and y axes, respectively. 192

Frequency response of the scanner is measured by applying 193

a wide-band chirp signal and recording the sensor output using 194

a fast Fourier transform (FFT) analyzer. Fundamental resonant 195

frequencies of the scanner are at 3.34 kHz and 3.57 kHz for x 196

and y axes, respectively; see Fig. 3. As described in [16], [20], 197

and [21], we use an analog controller to add damping to this 198

highly resonant system resulting in a closed-loop bandwidth of 199

approximately 4.5 kHz. We then identify a dynamical model 200

of the damped system that is a good fit up to a bandwidth of 201

60 kHz; see Fig. 3. In order to design the ILC, the estimated 202

model is then discretized using a zero-order hold at a sampling 203

frequency of 90720 Hz. This results in a nonminimum phase 204

(NMP) model with a pair of complex zeros outside the unit circle 205

at 0.98 ± j3.25 and 0.54 ± j7.11 for x and y axes, respectively. 206

B. Internal-Model-Based Controller 207

According to the internal model principle, steady-state track- 208

ing error asymptotically tends to zero when the controller in- 209

cludes an internal model of the reference signals [42]. Knowing 210

the reference a priori, we can design the controller by includ- 211

ing roots of reference generating polynomial in the controller 212

denominator and tuning the gain and zeros to place closed-loop 213

poles at desirable locations in order to attain acceptable tracking 214

and stability margins. Since reference signals for rosette pattern 215

scanning consist of pure sinusoids, the controller must contain 216

pure imaginary poles at those reference frequencies. The control 217

loop for one axis is shown in Fig. 4(a) where Cd and C denote 218

the damping and internal-model-based controllers, respectively. 219

Taking Laplace transform of reference signals in (7) and assum- 220

ing a proper controller with pure imaginary poles at ±jω1 and 221

±jω2, we obtain 222

Cx =
a4 s

4 + a3 s
3 + a2 s

2 + a1s+ a0

(s2 + ω2
1)(s

2 + ω2
2)

Cy =
b4 s

4 + b3 s
3 + b2 s

2 + b1s+ b0

(s2 + ω2
1)(s

2 + ω2
2)

.

(8)

Polynomial coefficients in (8) are determined based on the 223

desired closed-loop poles and stability margins. We tune con- 224

troller zeros to set the magnitude of the closed-loop response to 225
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Fig. 4. (a) Control scheme with damping loop (Cd) and feedback con-
troller (C). (b) Control scheme with the combination of iterative learning
controller and feedback controller. The damped plant is modeled as Gd

and the projected unmodeled disturbance is denoted by dp. Here, L and
Q are the learning and robustness filters in ILC, and z−1 indicates a shift
in the iteration domain.

TABLE I
REFERENCE FREQUENCIES AND STABILITY MARGINS AT ALL FRAME RATES

unity at the desired reference frequencies. In Table I, we state226

the reference frequencies and stability margins for each frame227

rate. Simulated frequency responses of the x-axis closed-loop228

system at various frame rates are depicted in Fig. 5. The y-axis229

responses are similar. Although the closed-loop response at f1230

and f2 is set to unity, the peak at f2 is not as sharp as f1. This231

results in a short settling time for tracking of the slow sinusoid.232

Assuming linear dynamics for the damped nanopositioner,233

we can achieve approximately zero steady-state tracking error234

when the feedback controller includes the reference dynamics.235

In practice, however, the displacement is a nonlinear function236

of actuation due to the quadratic relationship between force and237

voltage in an electrostatic MEMS device [16], [22]. Moreover,238

minor asymmetries of the actuators due to the fabrication tol-239

erances can induce nonlinearities not captured in the system240

identification. Therefore, higher harmonics of both reference241

frequencies and their combinations lead to large tracking er-242

rors [13], [16]. In Fig. 4(a), d represents disturbances due to243

Fig. 5. Simulated frequency response of the closed-loop system with
the internal-model-based controller at different frame rates.

unmodeled dynamics and n denotes the sensor noise, which is 244

mainly originated from the piezoresistive elements, amplifiers, 245

and electric components of the readout circuit. 246

C. Iterative Learning Control 247

Iterative learning control utilizes information from past ex- 248

periments to update control action to achieve high-precision 249

tracking of the reference signal in presence of repeating dis- 250

turbances. We investigate convergence properties of the algo- 251

rithm and obtain a bound on the asymptotic tracking error. 252

We then design ILC filters that meet the convergence crite- 253

rion and minimize the ultimate tracking error. In our design, 254

we employ well-established inversion approximation methods 255

to implement the inversion-based learning filter. The control 256

scheme that integrates the ILC with the feedback controller is 257

depicted in Fig. 4(b). For the sake of simplicity, the damping 258

loop is substituted by the damped plant, Gd. For later analysis, 259

the unmodeled disturbance d is projected into the sensor output 260

as dp. That is 261

dp =
d

1 + Cd(z)G(z)
. (9)

We assume that disturbances are repeating and iteration in- 262

variant, and use the following update law [33], [34]: 263

uI,k+1 = Q(z)[uI,k + αL(z)ek], k ≥ 1 (10)

where uI,1 = 0, and L(z) and Q(z) are the learning and ro- 264

bustness filters, respectively. Here, α is the learning gain, and 265

uI,k and ek denote the ILC control input and the tracking error 266

at the kth iteration, respectively. The tracking results of the 267

kth iteration are available for the update law at the (k + 1)th 268

iteration. In this approach, uI,k+1 is calculated using (10) and 269

augmented to the feedback control input in the current iteration. 270

To guarantee convergence of the ILC algorithm in the iteration 271

domain, tracking error and control inputs must remain bounded 272
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in the presence of uncertainties. According to Fig. 4(b), we have273

ek+1 = yd − yk+1 − nk+1

uk+1 = uC,k+1 + uI,k+1

yk+1 = uk+1Gd(z) + dp.

(11)

For simplicity, we discard (z) in the following formulations. To274

analyze the effect of noise on the steady-state tracking error275

and convergence, we assume that measurement noise is varying276

through iterations and uniformly bounded at each iteration, i.e.,277

|nk| ≤ δ. Accordingly, the ILC algorithm converges if the ILC278

filters are designed such that279

|Q(1 − αLSGd)| < 1 (12)

and accordingly, the asymptotic error at convergence is bounded280

by281

e∞ = lim
k→∞

|ek| ≤ |S(1 −Q)|
1 − ρ

|yd − dp|

+
|αSQLSGd|

1 − ρ
|δ|+ |S||δ| (13)

where ρ = Q(1 − αLSGd) andS is the sensitivity function. For282

the proof and details; see Appendix.283

1) Design of Learning Filter L: A number of techniques have284

been proposed to design the learning filter [24]. According to285

(22), the learning filter is selected so that286

L = (SGd)
−1. (14)

Therefore, the algorithm converges in one iteration assuming287

Q = 1 and ignoring the effect of noise. The challenge with288

this technique is the NMP zeros of the plant. NMP zeros are289

inevitable when the plant is discretized at a certain sampling290

frequency or when the sensors and actuators are not collocated.291

To determine stable approximate inversion, well-established292

techniques such as NMP zeros ignore (NPZ-ignore), zero mag-293

nitude error tracking controller (ZMETC), and zero-phase error294

tracking controller (ZPETC) have been employed [43], [44].295

These techniques are straightforward and effective in achieving296

the desired tracking performance. The NPZ-ignore algorithm297

ignores a part of system dynamics and, hence, is less accurate298

than other methods. ZMETC and ZPETC approximate the effect299

of NMP zero by a stable zero and a stable pole, respectively. The300

type of the system, the location of NMP zeros, and the nature301

of the application determine the algorithm most suitable for the302

approximate inversion [43].303

Anticausal filtering [45] or stable inversion [44], [46] are304

alternatives to inverse approximation methods. They can sig-305

nificantly improve the tracking results. These approaches are306

based on partitioning the model into two parts consisting of307

the minimum-phase and NMP zeros. Inversion of the first part308

is straightforward. However, stable inverse of the second part is309

anticausal. To perform anticausal filtering, we can replace z with310

z−1 and apply the filter on the time-reversed input sequence.311

Here, we explore the performance of ZMETC and anticausal312

filtering approaches in designing the learning filter. To obtain L313

using ZMETC, we define H(z) = S(z)Gd(z), i.e. 314

H(z) =
Bs(z)Bu(z)

A(z)
(15)

where A(z) incorporates poles and Bs(z) and Bu(z) include 315

stable and unstable zeros, respectively. Since H(z) is a proper 316

transfer function, we omit the units of delay considered for 317

causal implementation. Here, Bu(z) is a polynomial writ- 318

ten as Bu(z) = bun
zn + bun−1z

n−1 + · · ·+ bu0 . According to 319

ZMETC, the approximate inverse of H(z) can be obtained by 320

reflecting unstable zeros to stable ones with respect to the unit 321

circle, i.e., zui
→ 1/zui

. Therefore, H̃−1(z) can be obtained as 322

H̃−1(z) =
A(z)

Bs(z)B�
u(z)

(16)

whereB�
u(z) = bu0z

n + bu1z
n−1 + · · ·+ bun

. Note that dc gain 323

adjustment is not required since the dc gain remains unchanged. 324

In anticausal filtering approach [45], H(z) can be factorized 325

into 326

H(z) = Hs(z)Hu(z) (17)

whereHs(z) andHu(z) contain the invertible and noninvertible 327

zeros, respectively. Accordingly, H−1
s (z) is stable and causal, 328

while H−1
u (z) is stable and anticausal. Since the ILC algorithm 329

is applied offline, and the tracking error is available from the 330

previous iteration, we may determine L by anticausal filtering 331

approach. From (10) and (17), we may write 332

wk(t) = H−1
s (z)ek(t) (18)

then, the anticausal filtering can be implemented by reversing 333

the sequence, wk(t), and applying the causal filter, i.e. 334

vk(t) = H−1
u (z−1)wk(N − t). (19)

Finally, the filtered output is obtained by reversing vk(t), i.e., 335

zk(t) = vk(N − t). Thus, the ILC control update law in (10) 336

can be rewritten as 337

uI,k+1(z) = Q(z)[uI,k(z) + αzk], k ≥ 1. (20)

The anticausal filtering method invertsSGd implicitly and deter- 338

mines the learning filter. Therefore, the ILC algorithm converges 339

fast and yields smaller tracking error in comparison with the 340

ZMETC, which suffers from approximation error. 341

2) Design of Robustness Filter Q: According to (13), track- 342

ing error approaches zero asymptotically if Q = 1 and |δ| ≈ 0. 343

In practice, however, |δ| �= 0 and theQ-filter is typically selected 344

as a low-pass filter to mitigate nonrepeating disturbances and 345

high-frequency noise. The cut-off frequency of Q, on the other 346

hand, should be large enough to include reference frequencies 347

and disturbances. In this case,Q can effectively minimize the de- 348

terministic component of the tracking error. It is clear from (13) 349

that in order to minimize the effect of disturbances and noise, 350

we must have |S(1 −Q)| < 1 and |SQ| < 1. This requires a 351

compromise in designing Q. As discussed in [47], the variance 352

of error at convergence is limited by the variance of iteration 353

varying noise and disturbances. The variance can be reduced by 354

selecting the learning gain as 0 < α ≤ 1. This will ensure that 355

the ILC algorithm will converge with a small tracking error in the 356
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Fig. 6. Magnitude of the low-pass Q-filter, |1 − LSGd| and
|Q(1 − LSGd)| when the ZMETC technique is employed to design the
learning filter for tracking the rosette pattern at 10 fps.

Fig. 7. Experimental setup consists of a MEMS nanopositioner inte-
grated into a commercial AFM. The inset shows the contact-mode can-
tilever landed on the gold features microfabricated on the scan table [18].

presence of iteration varying noise and disturbances. Decreasing357

the learning gain will also reduce the convergence rate.358

Here, a fourth-order Butterworth filter is used as the Q-filter.359

The bandwidth of the filter is selected as 5 kHz, 6.5 kHz, 8.5 kHz,360

and 11 kHz at 5 fps, 10 fps, 15 fps, and 20 fps, respectively.361

Accordingly, Q-filter ensures the stability and convergence of362

the ILC algorithm when the ZMETC technique is applied. As363

shown in Fig. 6, theQ-filter makes |1 − αLSGd| small at higher364

frequencies. To avoid any distortion in the output signal due to365

the phase shift imposed by the filter, a zero-phase filtering is366

employed using filtfilt(·) function in MATLAB.367

Since the filter bandwidth is large at high frame rates to en-368

compass higher harmonics, the tracking error may not decrease369

monotonically due to the high-frequency noise. To address this370

issue, α is set to 0.7 and 0.5 at 15 fps and 20 fps, respectively,371

and to unity at 5 fps and 10 fps.372

IV. EXPERIMENT373

To evaluate the performance of the proposed control scheme,374

we conducted tracking experiments at 5 fps, 10 fps, 15 fps, and375

20 fps using a feedback-controlled MEMS nanopositioner, as376

shown in Fig. 7. In this section, we present the experimental377

results and discuss the performance of two inversion techniques378

in tracking the rosette pattern.379

A. Implementation380

The closed-loop system is implemented in a dSPACE Micro-381

LabBox with a sampling frequency of 90720 Hz. The control382

signal is amplified to drive the lateral axes of the nanopositioner383

Fig. 8. Reference signals of rosette pattern at 5 fps after zero padding.

and the stage displacement is measured using the sensor output’s 384

voltage and predetermined calibration factors. To implement 385

the ILC, we require an interface to communicate between the 386

hardware and the software. ASAM XIL API is a standard utilized 387

in dSPACE to facilitate such communications. Specifically, we 388

used the XIL API model access port to gain access to the 389

SIMULINK model, write into the blocks, and capture signals. 390

We then used the XIL API. NET implementation as a high-level 391

program in a MATLAB script to implement the ILC algorithm, 392

and to read and manipulate the variables online. Initially, the 393

ILC control input is set to zero and the IMBC is employed 394

in the tracking experiment. Then, the experiment is continued 395

iteratively and the desired signals including the tracking error 396

are captured in each iteration to update the ILC control drive 397

signal. The experiment is performed for a specific number of 398

iterations to ensure the convergence of the ILC algorithm. We 399

allow for 15 iterations, although the algorithm converges very 400

fast in practice. 401

B. Tracking the Rosette Pattern 402

Since the damped plant is NMP, anticausal learning and filter- 403

ing may result in transients. To address this issue, we may extend 404

the reference signals by leading and trailing zeros, which we will 405

truncate at the end. The number of zeros Nz is determined such 406

that the imaging rate for single-frame scanning remains almost 407

unchanged. Note that no zero is added to intermediate frames 408

in sequential scanning. Consequently, the extended reference 409

signals, in a single-frame scan, are obtained as 410

xa(t), ya(t) =

⎧⎪⎨
⎪⎩

0 0 ≤ t ≤ Δ

x(t), y(t) Δ ≤ t ≤ T +Δ

0 T +Δ ≤ t ≤ T + 2Δ

(21)

whereΔ = Nzfs and fs is the sampling frequency. Based on the 411

expected transient time, we selectΔ = 1/f1 with f1 as described 412

by (2). This extends the scan time to T + 2Δ. Fig. 8 shows the 413

reference signals at 5 fps after zero-padding. In a single-frame 414

scanning, the scan time increases by 1%, which is negligible. 415

C. Experimental Results 416

Initially, we perform closed-loop experiments to track a single 417

frame of the rosette pattern generated by the reference signals in 418

(21). Fig. 9 shows the root-mean-square (RMS) value of tracking 419

error at each iteration and the close-up views indicate the track- 420

ing error at convergence. Note that the RMS value of error at the 421

first iteration is corresponding to the IMBC when the ILC is inac- 422

tive. We observe that the learning algorithm converges quickly, 423
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Fig. 9. RMS value of error at each iteration when the anticausal filtering approach (a) to (d) and ZMETC technique (e) to (h) have been employed
to determine the learning filter L at (a) and (e) 5 fps, (b) and (f) 10 fps, (c) and (g) 15 fps, (d) and (h) 20 fps.

TABLE II
RMS VALUE OF TRACKING ERROR INCLUDING THE

TRANSIENTS AT ALL FRAME RATES

and tracking error decreases monotonically through iterations424

with both inversion techniques. At low frame rates, the algorithm425

converges in less than three iterations, while it takes five to seven426

iterations for the tracking error to approach the asymptotic value427

at higher frame rates. It is clear that the learning rate is faster428

at 5 fps and 10 fps since α = 1. Fig. 9(a)–(d) describes a fast429

convergence rate with the anticausal filtering approach, whereas430

it takes slightly longer for the algorithm to converge using431

the ZMETC technique, particularly at higher frame rates; see432

Fig. 9(e)–(h). It appears that the accuracy of ZMETC degrades433

at 20 fps as the higher harmonics of the reference frequency lie434

beyond the bandwidth of the plant resulting in an approximation435

error. Since single-fame scanning is also performed here, we436

consider both the transient and steady-state errors in calculation437

of the RMS values. From experimental results, we observe that438

the combination of ILC with IMBC properly minimizes the439

transient and steady-state error at convergence.440

Table II presents the RMS value of tracking error with the441

proposed control scheme. We achieve 90% improvement with442

ILC using the anticausal filtering approach. Moreover, the RMS443

value of tracking error decreases to less than 0.1% of the scan di-444

ameter. Considering the fact that IMBC restricts the sensor noise445

and bounds the tracking error at the first iteration, integrating the446

ILC with the IMBC enhances the tracking performance.447

To evaluate the efficacy of the proposed control scheme in re-448

jecting the repetitive disturbances, we obtain FFT of the tracking449

error. Fig. 10 shows FFT of tracking error with anticausal filter-450

ing and ZMETC approaches at all frame rates. The closeup views451

reveal that the ILC precisely removes the higher harmonics not 452

compensated by the IMBC alone. Both inversion techniques 453

yield a good tracking performance, however, assuming identical 454

gains, the anticausal filtering approach outperforms ZMETC 455

at high frame rates; see Fig. 10(h). We observe that at 20 fps 456

fundamental harmonic at f1 has been removed satisfactorily, 457

however, the second harmonic at 7560 Hz is still dominant in 458

the error. 459

Fig. 11 depicts the time-domain results for single-frame track- 460

ing of the rosette pattern. Because of its effectiveness, here we 461

report the time-domain results with the anticausal filtering only. 462

Note that the padded zeros are truncated from the results. The 463

integration of ILC with IMBC leads to a visible improvement in 464

tracking. We also observe that IMBC leaves a steady-state error 465

in the y-axis when the ILC is off. Although the nanopositioner 466

dynamics are very similar in x and y axes, the y-axis closed-loop 467

system with IMBC cannot follow the low-frequency reference 468

signal in one scan period. Augmenting the tracking controller 469

with integral action may address the issue, but the ILC eliminates 470

the y-axis steady-state error successfully. 471

As illustrated in the close-up views of Fig. 11, a large peak 472

appears at the beginning and end of y-axis tracking error during 473

single-frame scans. This is due to the nonzero steady-state 474

tracking error and the backward–forward technique used to 475

implement the learning and robustness filters. To prevent the 476

peak of error from affecting single-frame scans, we provide a 477

priori learning using the pattern’s periodicity. We extend the 478

length of the reference signals by replacing T with T + 2ε in 479

(21). Here, ε is selected as 1/f1 to cover the transient duration. 480

In this case, the scan time for single-frame scanning increases 481

by less than 2%. In sequential scanning, consecutive frames 482

are not affected by the error peak meaning that the scan time 483

of successive frames remains unchanged. Therefore, the overall 484

scan time will be Tf = NfT + 2Δ+ 2ε, where Nf is the total 485

number of frames. 486

Steady-state tracking errors in Table III allows us to compare 487

the performance of proposed control structure with the IMBC 488

during sequential rosette scan assuming that the transient re- 489

sponse is disappeared. Combined ILC/IMBC reduces the peak 490

to peak value of steady-state error by 50% and keeping it below 491
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Fig. 10. FFT of tracking error with IMBC and the combination of ILC and IMBC when the anticausal filtering approach (a) to (d) and ZMETC
technique (e) to (h) are employed to determine the learning filter (L) at 5 fps, 10 fps, 15 fps, and 20 fps.

Fig. 11. Time-domain tracking results of single-frame scan at (a) 5 fps, (b) 10 fps, (c) 15 fps, and (d) 20 fps when the anticausal filtering approach
is employed to determine the learning filter.
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Fig. 12. Reference and actual rosette trajectory at (a) 5 fps, (b) 10 fps, (c) 15 fps, and (d) 20 fps.

TABLE III
RMS VALUE OF STEADY-STATE TRACKING ERROR AT ALL FRAME RATES

20 nm. In addition, this method improves the x- and y-axis492

tracking errors by more than 27% and 79%, respectively.493

As discussed in Section III-C, RMS value of tracking er-494

ror at convergence is bounded by iteration varying noise and495

disturbances. According to (13), e∞ ≤ 2|S||δ| if Q = 1, and496

L = (SGd)
−1. Therefore, asymptotic error relies on the sensor497

output noise fed back to the system. Since IMBC attenuates the498

high-frequency projected noise, the upper bound on the ultimate499

error determines the resolution of the displacement sensors. To500

obtain sensor resolution in open loop and under damping, we501

recorded sensor output noise for 60 s at a sampling frequency of502

62.5 kHz with an antialiasing filter (Stanford Research SR650503

low-noise filter) with a cut-off frequency of 15 kHz being used504

in the path. To reject noise and electrical disturbances, the505

experiment was performed in a closed metal box. Open-loop506

RMS value of noise is 2 nm, with the actuators electrically507

grounded, and it is about 3 nm with the damping loop being508

active. Asymptotic error obtained with the anticausal filtering509

approach is bounded by about 4 nm, which is close to the sensor510

noise floor.511

The rosette trajectory and the actual displacement of the stage512

tracing the rosette pattern are depicted in Fig. 12. Close-up views513

validate the tracking performance at all frame rates when the ILC514

is integrated with the internal-model-based controller.515

V. AFM IMAGING516

To implement rosette scanning with the proposed control517

scheme, we used an AFMWorkshop TT-AFM. We mounted518

an MEMS nanopositioner on the AFM 3-DOF positioning519

mechanism. The MEMS device serves as the scanner in the520

Fig. 13. 3-D AFM images acquired with rosette-scan at (a) 5 fps, (b)
10 fps, (c) 15 fps, and (d) 20 fps on a window size with a diameter of
6µm.

experiments reported here. As indicated in the inset of Fig. 7, 521

the periodic gold features fabricated on the scan table of the 522

MEMS nanopositioner were used as the sample. Dimensions of 523

the gratings is 4 × 4 × 0.5μm3 with a pitch of 3μm [5]. Due to 524

the low z-axis bandwidth of the commercial AFM’s positioner, 525

we performed the experiments in constant-height contact mode. 526

We used a contact-mode cantilever with a resonance frequency 527

of about 27.8 kHz and stiffness of 0.25 N/m. When the cantilever 528

was landed on the MEMS scan table, we closed the control loop 529

and activated the iterative learning algorithm. X and Y sensor 530

outputs and cantilever deflection were recorded simultaneously 531

to construct 3-D AFM images. Fig. 13 depicts a single-frame of 532

rosette scan at frame rates ranging from 5 to 20 fps, indicating 533

that AFM images have precisely captured the structure of a gold 534

feature. 535

We also performed sequential scanning at video rate. To 536

imitate a dynamic process, the AFM positioner was made to 537

raster at 0.2 Hz over a window size of 6 × 6μm2 while the 538

MEMS nanopositioner was following the rosette pattern at 20 fps 539

in a scan area with a diameter of 6μm. Fig. 14 illustrates a series 540

of AFM time-lapsed images that capture the gold feature moving 541

slowly under the cantilever. 542
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Fig. 14. Series of rosette-scan frames at 20 fps captured in constant-
height contact mode on a window size with a diameter of 6µm.

VI. CONCLUSION543

We demonstrate video-rate rosette scanning by combining544

an internal-model-based controller with an iterative learning545

controller. The feedback controller contains an internal model546

of the reference signals and limits the closed-loop bandwidth547

to bound the tracking error when the ILC is OFF. The ILC is548

used to mitigate induced disturbances originating from inherent549

system nonlinearities. The model-based ILC is designed using550

well-established inversion techniques. The experimental results551

validate the efficacy of the control scheme in reducing transient552

and steady-state tracking errors at several frame rates. We show553

that this control scheme is suitable for both sequential and554

single-frame scanning. We acquire successive AFM images of555

slowly moving gold features at 20 fps in constant-height contact556

mode. In future works, we will implement the scanning experi-557

ment in constant-force contact mode and tapping mode using a558

high-bandwidth z-axis positioner.559

APPENDIX560

According to (11), the tracking error in the (k + 1)th iteration561

can be described as562

ek+1 = Q(1 − αLSGd)ek + S(1 −Q)(yd − dp)

+ SQnk − Snk+1. (22)

Proceeding through iterations, we can derive the relationship563

between ek+1 and e1 as564

ek+1 = ρke1 +

k−1∑
i=0

S(1 −Q)(yd − dp)ρ
i

+

k−1∑
i=0

SQρink−i −
k−1∑
i=0

Sρink+1−i

(23)

where ρ = Q(1 − αLSGd). By changing the index variable, 565

the last two terms can be combined into one, hence, (23) can be 566

simplified to 567

ek+1 = ρke1 + S(1 −Q)(yd − dp)
k−1∑
i=0

ρi

+ SQLSGd

k−1∑
i=0

ρink−i − Snk+1 + ρkn1.

(24)

Assuming |nk| ≤ δ, the upper bound on ek+1 is obtained as 568

|ek+1| ≤ |ρ|k|e1|+ |S(1 −Q)||yd − dp|
k−1∑
i=0

|ρ|i

+ |SQLSGd|
k−1∑
i=0

|ρ|i|δ| − |S||δ|+ |ρ|k|δ|.
(25)

Since the feedback controller is designed to keep the tracking 569

error small at the first iteration, |e1| is bounded. As a result, (25) 570

implies that the asymptotic error is bounded when k → ∞ if 571

|ρ| < 1. 572
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