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Abstract—Emerging multifrequency atomic force microscopy
(MF-AFM) methods rely on coherent demodulation of the can-
tilever deflection signal at multiple frequencies. These measure-
ments are needed in order to close the z-axis feedback loop and
to acquire complementary information on the tip-sample inter-
action. While the common method is to use a lock-in amplifier
capable of recovering low-level signals from noisy backgrounds,
its performance is ultimately bounded by the bandwidth of the
low-pass filters. In light of the demand for constantly increasing
imaging speeds while providing multifrequency flexibility, we
propose to estimate the in-phase and quadrature components
with a linear time-varying Kalman filter. The chosen representa-
tion allows for an efficient high-bandwidth implementation on a
Field Programmable Gate Array (FPGA). Tracking bandwidth
and noise performance are verified experimentally and trimodal
AFM results on a two-component polymer sample highlight the
applicability of the proposed method for MF-AFM.

Index Terms—Multifrequency Atomic Force Microscopy, State
Estimation, Kalman Filter, High-speed, FPGA Implementation

I. I NTRODUCTION

T HE invention of atomic force microscopy (AFM) [1],
made it possible to capture a sample’s topographical

information with nanometer resolution by coupling the tip
of a cantilever to the surface of the specimen [2]. Due to
the nonlinear tip-sample forces acting on the cantilever, a
feedback loop has to be employed in order to maintain a fixed
setpoint with respect to the sample. In amplitude modulation
(AM)-AFM [3], the feedback parameter is the demodulated
amplitude of the deflection signal but other parameters such
as the frequency shift in frequency modulation (FM)-AFM
[4] can be employed. In these dynamic imaging modes, the
cantilever is usually excited close to its fundamental resonance
frequency and the feedback loop is closed by commanding the
z-axis nanopositioner. A three dimensional topography image
of the sample’s surface can be obtained by plotting the control
signal against the lateral scan trajectories of the nanopositioner.
Specifically, when investigating biologically-relevant samples,
AM-AFM can provide the required gentle imaging forces
[5] but comes with inherent slow imaging speeds which are
detrimental to capturing the typically fast associated dynamics
[6].
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In order to go beyond the study of topographical infor-
mation, modern multifrequency (MF)-AFM methods can be
employed. These techniques extend the imaging channels to
multiple frequencies in order to obtain the nanomechanical
composition of a sample [7]. The frequencies are usually
associated with either the higher harmonics, generated by the
nonlinearity in the tip-sample force, or with the resonance
frequencies of the higher order eigenmodes [8]. This extension
has led to novel methods such as higher harmonic imaging
[9], band-excitation [10], dual-frequency and off-resonance
excitation [11] and multimodal AFM [12]–[14]. The latter
setup, as depicted in Fig. 1, enables the nanomechanical char-
acterization of soft matter with high spatial resolution [15]–
[17] based on the presence of additional distinct frequency
components in the deflection signal.

Recently, it was proposed to estimate the tip-sample force
directly, potentially enabling high-bandwidth z-axis control
[18]. However in conventional AM-AFM, a fundamental
component of the feedback loop is the demodulator, whose
function is to obtain amplitude and phase of the cantilever
deflection signal. If an AFM setup is optimized for speed,
every component in the feedback loop, i.e. the cantilever, the
x-, y-, z-axis nanopositioner, the z-axis controller and the de-
modulator have to be optimized for high bandwidth [19]. High-
speed estimation methods, such as single wave detectors based
on the peak-hold method [20] and real-time integration [21],
have been designed particularly for high-bandwidth amplitude
estimation. However, they have no robustness against noise
and other frequencies present in the deflection signal which
makes them inherently incompatible with modern MF-AFM
methods. In contrast, narrowband demodulation performed by
a lock-in amplifier (LIA), and its improved version using
phase cancellation [22], is more suitable at rejecting unwanted
frequency components but at the expense of the measurement
bandwidth. The response time is dictated by the post-mixing
low-pass filter (LPF), which has to be employed to suppress
the frequency component at twice the carrier frequency. As
such, it is state of the art to use a number of lock-in amplifiers
for MF-AFM experiments; an increasing number of frequen-
cies inevitably renders this approach costly and infeasible.

Motivated by earlier research on tracking power system
voltages [23], we previously proposed to employ a Kalman
filter with a linear time-varying model of the sinusoid to be
estimated. The method was shown to lead to less mixing-
induced high-frequency noise and a higher estimation band-
width than a commercially available lock-in amplifier [24]. In
this paper, we extend our previous work to estimating the in-
phase and quadrature states of multiple frequencies, related



1083-4435 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2016.2574640, IEEE/ASME
Transactions on Mechatronics

IEEE TRANSACTIONS ON MECHATRONICS 2

PI

sample

piezo

cantilever

laser

photodetector Kalman filter

Aset

A1(t)z-axis controller

topography
estimate

deflection
signal

∑
fi

Ai(t)

Φi(t)

x̂k

nanopositioner

Fig. 1. Schematic of the z-axis feedback loop in trimodal atomic force
microscopy using a Kalman filter for demodulation.

to higher harmonics and/or higher eigenmodes in an MF-
AFM experiment, simultaneously. The filter is implemented
on a Field Programmable Gate Array (FPGA), a tool which
is becoming increasingly important in AFM applications [25].
The choice of system representation allows for a high-speed,
highly parallelized implementation and avoids the numerical
complications that often arise when implementing estima-
tors for highly resonant structures. Numerical results on the
tracking bandwidth, robustness to state cross-coupling and the
effect of uncertainty in the frequency to be estimated have
instigated the excellent suitability of a multifrequency Kalman
filter for MF-AFM [26].

In Section II, we outline the time-varying transformation
which takes the linear time-invariant model into a form suit-
able for high-speed digital implementation. We analyze the
discrete Kalman filter equations in order to reach a better
understanding of its performance and to predict its tracking
bandwidtha priori. In Section III, we present numerical results
on modulating amplitude and phase of a multifrequency signal
which forms the basis for a multimodal AFM experiment.
In Section IV, we outline the efficient implementation of
the Kalman filter on an FPGA and in Section V we present
experimental results on demodulating multifrequency signals
and compare the estimates with the performance of a state-of-
the-art lock-in amplifier. The Kalman filter is compared against
the LIA in terms of off-mode rejection and its robustness to
white noise is evaluated over a wide tracking bandwidth. In
Section VI, we highlight the additional benefit of being able
to estimate the static offset in the cantilever deflection signal,
simultaneously. Finally, we employ the Kalman filter during
trimodal AFM imaging of a soft polymer blend confirming the
feasibility of the estimation method for multifrequency Atomic
Force Microscopy.

II. SYSTEM MODEL

A. Continuous-time Model

The modal motionssi(t) of n cantilever eigenmodes can
be described by the set of homogeneous differential equations

of simple harmonic oscillators with resonance frequencyωi

given by

s̈1(t) + ω2
1s1(t) = 0

s̈2(t) + ω2
2s2(t) = 0

...

s̈n(t) + ω2
nsn(t) = 0. (1)

Here, each oscillator represents a frequency component whose
amplitude and phase are to be estimated. The set of equations
can be cast into a state-space model by choosing position
x2i−1 = si(t) and velocityx2i = ṡi(t) as the state variables
and position as the output

ẋ = Ax =







A1 0
. . .

0 An






x

y = Cx =
[

1 0 · · · 1 0
]

x. (2)

where each block matrixAi is represented by

Ai =

[

0 1
−ω2

i 0

]

. (3)

While the canonical forms (3) are useful in the analysis and
understanding of the state equations, the resulting sparse nature
of A make them generally ill-conditioned for numerical com-
putations. This can be seen by calculating the condition num-
ber κ with respect to a matrix norm of a square matrix [27].
For instance, the 2-norm condition number of the first diagonal
block matrixA1 for a frequency ofω1 = 2π50 · 103rad/s is
κ(A1) ≈ 9.9·1010. Further, the condition number will increase
for increasingω and for the overall matrixA, it takes the value
of the one relating to the highestωi. Therefore, consider the
time-variant transformation [24]

T (t) =







T1(t) 0
. ..

0 Tn(t)






(4)

with

Ti(t) =

[

cos (ωit) sin (ωit)
−ωi sin (ωit) ωi cos (ωit)

]

(5)

such that

x = T (t)x̄. (6)

Then, a time-variant state-space representation can be obtained
by

˙̄x =
d

dt

(

T−1(t)x
)

= Āx̄

ȳ = CT (t)x̄ = C̄(t)x̄ (7)

which converts (2) into the following form [24]

˙̄x = 02nx̄

ȳ =
[

cos (ω1t) sin (ω1t) · · · cos (ωnt) sin (ωnt)
]

x̄
(8)
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where02n is a 2n by 2n zero matrix. Here, all the dynamics
appear inC̄(t) and the individual sinusoidal components can
be recovered via

si(t) = x̄2i−1 cos (ωit) + x̄2i sin (ωit)

= Si sin (ωit+ φi). (9)

From (9), amplitude and phase of the frequencies of interest
can be recovered with

Si =
√

x̄2
2i−1 + x̄2

2i (10)

φi = arctan

(

x̄2i−1

x̄2i

)

. (11)

B. Discrete-time Model

Discretizing (8) witht = kTs, whereTs is the sampling
period and adding an additional state to estimate the DC offset
[24], yields

Ak = eĀkTs = I2n+1 (12)

Ck =
[

cos θ1,k sin θ1,k · · · cos θn,k sin θn,k 1
]

where θi,k = ωikTs and I2n+1 is the identity matrix of
dimension2n+1. Note, that the condition numberκ(Ak) = 1
is optimal. We consider the statesx2i−1,k and x2i,k, which
dictate amplitude and phase of each sinusoidal component, and
x2n+1,k, which dictates the DC offset, as random variables.
If we assume that the state and output equations are only
corrupted by zero-mean Gaussian white noise processeswk

andvk, the system representation forms the process model for
a discrete time-varying (DTV) Kalman filter

xk+1 = Akxk + wk

yk = Ckxk + vk

E[wkw
T
k ] = Q

E[vkv
T
k ] = R

E[wkv
T
k ] = 0. (13)

The covariance of the process noiseQ indicates the model
uncertainty and the covariance of the measurement noiseR
relates to the quality of the measurements. Note thatQ andR
have an adverse effect on the Kalman gainKk and therefore
directly influence the amplitude and phase tracking bandwidth.
The recursive Kalman filter implementation then consists of
iterating between the prediction step using the process model
(13) and updating the state estimate and covariance estimate
with the Kalman gain [28], [29]. Due to the choice of the
system representation, i.e.Ak being the identity matrix, the
calculations in the prediction steps are heavily simplified
benefiting a high-bandwidth FPGA implementation. Undoubt-
edly, the computationally most expensive calculation is related
to the covariance matrix update, therefore parallelizing and
simplifying computations becomes crucial. Here, we chose the
Joseph form [28] which maintains the property of symmetry
and positive definiteness even if a suboptimal noise covariance
matrix Q is assumed in order to maximize the tracking
bandwidth of the Kalman filter.

C. Error Dynamics of the DTV Kalman Filter

In order to obtain an estimate of the tracking bandwidth of
the Kalman filter, we look at the single frequency case (n= 1)
and define the Kalman filter priori (prediction) errorx̃k|k−1

and the corresponding output errorỹk|k−1

x̃k = x̃k|k−1 = xk − x̂k|k−1 = Akx̃k−1|k−1 + wk−1 (14)

ỹk = ỹk|k−1 = yk − ŷk|k−1 = Ckx̃k|k−1 + vk. (15)

Then we may determine the error model of the Kalman filter
to be a linear periodic discrete-time (LPDT) system of the
form

x̃k+1 = Ãkx̃k + B̃kũk

ỹk = C̃kx̃k + D̃kũk (16)

with

Ãk = Ak(I −KkCk)

B̃k =
[

I −AkKk

]

C̃k = Ck

D̃k =
[

0 I
]

ũk =
[

wk vk
]T

. (17)

Hence, the estimation error evolves with dynamics dictated
by the eigenvaluesλk of Ãk. Specifically, we have

Ãk =

[

1−K1,k cos θk −K1,k sin θk
−K2,k cos θk 1−K2,k sin θk

]

(18)

whose eigenvalues are obtained from

λ2
k + (K2,k sin θk +K1,k cos θk − 2)λk

+ 1−K2,k sin θk −K1,k cos θk = 0. (19)

Due to the time-varying nature of the Kalman gainsKk and
their dependence on the time-varying covariance matrixPk,
finding an analytical expression for the eigenvalues is tedious.
However, we notice that the Kalman gainsK1/2,k oscillate
with equivalent amplitude at the frequency to be estimated,
i.e. withω1 for the single mode case, are phase shifted by90◦

and lead theCk vector entries byϕ. Without loss of generality,
we can therefore assume that

K1,k = K cos (θk − ϕ) = D cos θk + E sin θk

K2,k = K sin (θk − ϕ) = D sin θk − E cos θk (20)

whereD = K cosϕ and E = K sinϕ. Substituting (20) in
(19) yields the characteristic equation

λ2
k + (D − 2)λ+ 1−D = 0 (21)

whose roots are real and time-invariant and are given by

λk,1/2 =

{

1

1−D = 1−K cosϕ.
(22)

We notice that one eigenvalue remains fixed atλk = 1 and the
other eigenvalue moves closer to the real axis as the Kalman
gain increases. This is illustrated in the simulations shown in
Fig. 2 for which four different values of the process noise
covarianceQ are assumed and the respective Kalman filter
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Fig. 2. Simulation of four different Kalman filters assuming decreasing values
of Q (−, −, −, −) showing (a) single frequency signal (−) and its amplitude
estimates, (b) Kalman gains, (c) Kalman gain phase, (d) trace of the covariance
matrix and (e) eigenvalues of̃Ak and atλk = 1 (−). Simulation Parameters:
f1 = 50 kHz, fs = 5MHz, Q1/2/3/4 = 10−6/10−7/10−8/10−9.

aims to track a step change in the amplitude of a single
frequency signalS1(t) sin

(

2πf1t
)

, without additive white
noise. Here, the subfigures are color coded and the system
shown in blue assumes the largest covarianceQ, and the other
systems assume a smaller covariance. As can be seen in Fig.
2a, the amplitude tracking bandwidth increases by assuming
a larger covarianceQ, the only tuning parameter, due to the
corresponding increasing Kalman gain amplitudes and phase
leads shown in Fig. 2(b) and Fig. 2(c), respectively. This in
turn is explained by a higher uncertainty in the model which
is expressed by the trace of the covariance matrixP shown in
Fig. 2(d), whose minimization is the aim of the Kalman filter.
As predicted by (22), the eigenvalues ofÃk are real with one
eigenvalue constant at one which is plotted in Fig. 2(e). The
second eigenvalue was shown to be a function of the Kalman
gain amplitude and phase and moves towards zero asQ is
increased, resembling a larger tracking bandwidth.

III. S IMULATION

In order to investigate the performance of the multifre-
quency Kalman filter, we simulate a multi-tonal signal with
amplitude and phase modulation. While a change in oscillation

amplitude usually resembles topography features in dynamic
AFM, a change in the phase may arise from sample regions
with varying elastic properties [30]. Therefore, a phase change
is not necessarily correlated with an amplitude change and
acts as a disturbance on the amplitude estimation. Consider
the signal of the form

s(t) =
3

∑

i=1

Si(t) sin
(

2πfit+ φi(t)
)

+ v (23)

where each frequency componentfi is related to thei-th
eigenmode of an AFM cantilever, the respective amplitudes
Si(t) are related to the oscillation amplitudes andv is a
white noise process with standard deviationσ. The signal
is plotted in Fig. 3(a) and its power spectral density (PSD)
is shown in Fig. 3(b). While the inset clearly depicts the
multifrequency character of the signal, the amplitude change
at the higher frequency components is not obvious. In order to
characterizev, the noise density was obtained by integrating
the PSD over the frequency range from DC to2.5MHz of
a thermal noise measurement taken with the optical beam
deflection sensor (not shown) [31] which yields a standard
deviation ofσ = 1.9mV. Assuming a Gaussian distribution,
the histogram can be plotted in Fig. 3(c). To demonstrate the
effect of white noise rejection of the proposed method we used
σ = 5mV and subsequently set the Kalman filter covariance
of the measurement noise toR = σ2.

The simulation results are shown in Fig. 4 where each
amplitudeSi and each phaseφi experiences a step change of
varying magnitude at different points in time. It can be clearly
observed how the amplitude and phase changes are accurately
tracked for each of the three frequencies. A small transient
response is noticeable in the amplitude (phase) estimate if
there is a step change in the phase (amplitude). It can be
seen that the magnitude of the transient responses in the
amplitude estimate due to a phase change are magnified
for higher frequency estimates. Here, a tradeoff has to be
made between estimation bandwidth and rejecting the coupling
between phase and amplitude change. Lowering the Q entries
for the higher frequency modes reduces the maximum transient
spike due to coupling but comes at the expense of tracking
bandwidth.

IV. I MPLEMENTATION

A. Hardware

In order to implement a Kalman filter to reliably estimate
amplitude and phase of frequencies up to1MHz, high-
bandwidth components must be selected. Here, we utilize a
Xilinx Kintex-7 KC705 evaluation board (model: XC7K325T)
with an internal clock rate of200MHz. The FPGA board is
interfaced with a DC-coupled high-speed 4DSP input/output
(I/O) card (model: FMC151) instrumented with a two channel
14-bit Analog-to-Digital converter (ADC) and a two channel
16-bit Digital-to-Analog converter (DAC) clocked at250MHz
and800MHz, respectively. For trimodal AFM, ideally an I/O
card with eight DACs would be necessary to simultaneously
output the cantilever driving signal, three amplitude and three
phases of the deflection signal and the estimated DC offset.
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Fig. 5. Block diagram highlighting the main modules of the multifrequency
Kalman filter implementation and the critical path.

Due to the limited number of channels, we switch between
the signals of interest but the four digital output ports of
the evaluation board could be employed using sigma-delta
modulation and low-pass filtering.

B. Firmware Design

The digital signal processing system (DSP) design of the
proposed multifrequency Kalman filter was split into the
design of four sub-modules, i.e. Kalman gain, error covari-
ance, state estimation and amplitude and phase calculation as
depicted in Fig. 5. The sinusoidal references are generated with
Direct Digital Synthesizer (DDS) compilers. Within the sub-
modules, specific Xilinx logic cores are utilized which in turn
use dedicated high-speed DSP logic slices implemented in a
pipelined structure. The two largest modules, the Kalman gain
calculation and the error covariance posterior update, define
the critical path and therefore dictate the overall achievable
speed of the implementation. Here, the Kalman gain compu-
tation

Kk = Pk|k−1C
T
k

(

CkPk|k−1C
T
k +R

)−1
(24)

is parallelized by computing an intermediate value

Zk = Pk|k−1C
T
k (25)

and simplified by exploiting the symmetry ofPk. In case of
the error covariance update,

Pk|k = (I −KkCk)Pk|k−1(I −KkCk)
T +KkRKT

k , (26)

we again make use of the symmetry and only calculate the
upper triangular values in order to reduce the complexity and
to maintain the positive definite nature ofPk. A matrix multi-
ply module is constructed which pipelines the multiplication of
two 7x7 matrices through the use of a state machine and Xilinx
logic core multipliers and adders on the lowest level. As the
priori state prediction has no dynamics, a simple wire is used
to feed back the states at each sample period. The posterior
state update is realized using a tree multiply-add architecture
with Xilinx logic cores. Note, that this module runs in parallel
with the much larger and slower error covariance update
module and therefore does not contribute to the critical path.
Finally, amplitude and phase are calculated by converting
the in-phase and quadrature states into polar form using the
CORDIC algorithm [32]. In summary, each module has been
designed to balance speed, memory usage and latency. As
such, an overall speed of1.5MHz has been achieved for the
7x7 Kalman filter, enabling the state estimation for resonance
frequencies up to750 kHz.
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V. EXPERIMENTAL RESULTS

A. Experimental Setup

The performance of the implemented Kalman filter was
experimentally assessed and compared with a state-of-the-art
lock-in amplifier (Z̈urich Instruments HF2LI) which provides
flexible post-mixing low pass filter settings. Multifrequency
amplitude and phase modulated signals corresponding to the
first three flexural modes of an AFM cantilever (Bruker
DMASP) were either hard coded into the FPGA itself or gen-
erated using laboratory function generators (Agilent 33210A).
Time-domain data was captured with a digital oscilloscope
(Agilent Infiniium DSO90254A) and with the four channel
acquisition front-end of a micro system analyzer (Polytec
MSA-050-3D).

B. Tracking Bandwidth

We investigate the amplitude tracking bandwidth of the
Kalman filter and the LIA for a multifrequency signal of the
form

s(t) =
3

∑

i=1

Si(t) sin
(

2πfit
)

(27)

in time and frequency domain. The frequenciesfi were
chosen to approximate the first three resonance frequencies
of a tapping-mode cantilever with stepped geometry (compare
Section VI) and the driving amplitudes were stepped from
25mV to 50mV.

For each frequency, we compare the Kalman filter at maxi-
mum bandwidth with a slow LIA employing a4th-order LPF
with cut-off frequency of5 kHz and a fast LIA with cut-off
frequencies of10, 25, 80 kHz, respectively for each modeled
frequency. The quality of the estimated amplitude is evaluated
based on the tracking bandwidth and noise in the estimate.
It can be seen in Fig. 6 how the Kalman filter consistently
provides the fastest estimate with the lowest noise compared
to both the slow and the fast LIAs. While the noise of the slow
LIA is comparable to the Kalman filter amplitude estimate, the
fast LIA shows significant2ω oscillation due to insufficient fil-
tering of the post-mixing frequency components. Also visible
is the phase estimate of the Kalman filter which shows the
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Fig. 7. Frequency response of the slow LIA (−), fast LIA (−) and Kalman
filter (−) for an FM-AM experiment for a carrier frequency of (a)50 kHz, (b)
130 kHz and (c)350 kHz. The legend shows the−3 dB tracking bandwidth.
Color coded according to Fig. 6.

characteristic coupling as predicted by the simulations shown
in Fig. 4.

The ultimate tracking bandwidth of either amplitude es-
timation scheme is experimentally verified by performing a
frequency sweep of an amplitude modulating signal for each
carrier frequency. This FM-AM concept directly reveals the
low pass filter characteristic of the Kalman filter and of the
post-mixing filters of the LIA and allows for a direct extraction
of the−3 dB bandwidth. The results are shown in Fig. 7 and
carry the same color code as in Fig. 6. It can be seen that
for each frequency whose amplitude is to be estimated, the
Kalman filter provides the largest bandwidth. Moreover, spikes
can be noticed in the frequency response of the fast LIAs at
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Fig. 8. Frequency response of (a) slow LIA, (b) fast LIA, (c) slow Kalman
filter and (d) fast Kalman filter for carrier frequencies of50 kHz (−), 130 kHz

(−) and350 kHz (−).

ω and 2ω in Fig. 6(a) and Fig. 6(b), i.e. when the carrier
frequency is low compared to the bandwidth. The spikes are
due to the fact that the LIA recovers both, the carrier frequency
itself and the large2ω component present in the estimate. The
results emphasize the fact that the Kalman filter is superior to
the LIA when carrier frequencies are small compared to the
necessary tracking bandwidth. While the tracking bandwidth
of the LIA can be increased by choosing a large low pass filter
cut-off frequency, the amplitude estimate becomes increasingly
distorted by the2ω component.

C. Off-Mode Rejection

We analyze the off-mode rejection of the LIA and the
Kalman filter by performing a frequency sweep on the signal
to be demodulated when specific frequency components are
modeled. For comparison, we chose the same frequencies as
in previous experiments. The results shown in Fig. 8 indicate
the performance of the LIA and the Kalman filter for both, a
narrow bandwidth (slow) demodulation and a wide bandwidth
(fast) demodulation. It is clear from Fig. 8(a) that the low
bandwidth LIA, being a narrowband demodulation device by
construction, shows the largest maximum off-mode rejection
(measured as the difference between the magnitude at the
carrier frequency and at1 kHz) of around45 dB for the first,
67 dB for the second and70 dB for the third carrier frequency.

If the LPF bandwidth is increased, the maximum off-mode
rejection drops to around25 dB for all frequencies as can
be seen in Fig. 8(b). In contrast, the Kalman filter with an
equivalent bandwidth of5 kHz only achieves a maximum off-
mode rejection of13 dB for all frequencies shown in Fig.
8(c). For the maximum bandwidth Kalman filter, depicted
in Fig. 8(d), the maximum off-mode rejection is12.5 dB. It
can be observed that the off-mode rejection is maximized at
frequencies modeled by other Kalman filter states. It can be
concluded that by modeling more frequencies, the same off-
mode rejection can be achieved as in Fig. 8(c) without sacri-
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Fig. 9. Magnitude frequency response of the Kalman filter for a fixed carrier
frequency of50 kHz for different bandwidths by varying the amount of
assumed process noiseQ.
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ficing the tracking bandwidth. On the contrary, the maximum
LIA off-mode rejection shows a strong dependence on the
tracking bandwidth.

D. Noise and Bias Discussion

The maximum obtainable resolution during dynamic mode
AFM imaging is dictated by the noise present in the imaging
signals. Here, the prominent contributing subsystems are the
nanopositioning system, specifically the displacement sensor
and high-voltage amplifier [33] and cantilever deflection read-
out method [34] in cascade with the demodulator [35]. Since
any additional component inevitably adds noise, it is of interest
to verify the performance of the Kalman filter to additive
sensor induced measurement noise as a function of the tracking
bandwidth. The input to the Kalman filter is connected to
a function generator with adjustable additive white noise.
The estimated amplitude is passed through a high order anti-
aliasing LPF with cut-off frequency of1.2MHz and sampled
at fs = 2.56MHz for T = 13.11 s. The standard deviation
(RMS noise) of the estimatêσ is obtained by integrating the
noise density estimate from DC tofs/2 using Welch’s method
without averaging nor overlap. The total integrated noise is
used as the performance metric.
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The Kalman filter was set to several different tracking
bandwidths ranging from500Hz to almost20 kHz as shown
in Fig. 9. In Fig. 10(a) it can be seen that a larger tracking
bandwidth clearly leads to a larger RMS noise in the amplitude
estimate while maintaining a constant bias plotted in Fig. 10(c)
(compare color coded Kalman filter frequency responses in
Fig. 10(a). A linear fit of the measurement points reveals very
good linearity for varying degrees of additive white noise. If
the RMS noise of the amplitude estimate is plotted against
the Kalman filter bandwidth, a plot such as Fig. 10(b) is
obtained. This measurement allows for a direct determination
of the resolution for a given imaging bandwidth. The quadratic
fit of the measurement points confirms the proportionality of
resolution with the square-root of the bandwidth. Fig. 10(d)
reveals the unbiased estimate of the Kalman filter as a function
of bandwidth.

In the absence of additive white noise, the RMS noise
of the amplitude estimate obtained from the Kalman filter
is compared with the demodulated amplitude of the LIA as
a function of the tracking bandwidth in Fig. 11. The RMS
noise of the Kalman filter estimate only increases slightly from
1.66mV for the smallest bandwidth of500Hz to 1.73mV
for the largest bandwidth of20 kHz. In contrast, the RMS
noise of the demodulated amplitude using a LIA, increases
quickly when the LPF cut-off frequency is increased above
10 kHz. This is due to the increasing harmonic distortion from
frequency components at the carrier and twice the carrier
frequency. Above15 kHz, the Kalman filter shows superior
noise performance.

VI. MF-AFM A PPLICATION

A. Experimental Setup

The multifrequency Kalman filter was incorporated in an
experimental MF-AFM setup as depicted in Fig. 1 using an
NT-MDT NTEGRA AFM equipped with a Bruker DMASP
piezoelectric cantilever. Due to its stepped geometry, this
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Fig. 12. Multifrequency signal (−) experiencing a step in the offset (−) and
offset estimates obtained from a slow LPF (−), fast LPF (−), maximum-
bandwidth Kalman filter (−) and reduced-bandwidth Kalman filter (−).
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while imaging a PS/LPDE polymer sample in tapping-mode.

cantilever has the benefit of having closely spaced eigenmodes
[36] benefiting mode-coupling and allowing for the first three
flexural modes to be estimated by the Kalman filter. The
AFM system was modified to allow for external demodulators
providing the feedback signal but is otherwise unaltered. The
sample under investigation is a blend of polystyrene (PS)
and polyolefin elastomer (ethylene-octene copolymer) (LDPE)
available from Bruker (PS-LDPE-12M). The PS regions of
the sample have elastic modulus numbers around2GPa,
while the LDPE regions have elastic modulus numbers around
0.1GPa, making it a widely used standard to image material
contrast. The scan speed was set to20µm/s at an area of
10µm× 10µm.

B. DC Tracking

The static deflection of the cantilever is usually related to
long-range electrostatic and magnetic interaction forces [37]
but is generally disregarded in dynamic AFM methods. How-
ever, in certain applications such as electric force microscopy
or Kelvin force microscopy, novel approaches measure local
electric properties of samples at multiple frequencies [38]
or use the estimated electrostatic contribution to cancel its
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effect during a force spectroscopy experiment [39]. Measuring
the static deflection of the cantilever during multifrequency
excitation can be achieved by using a LIA with zero carrier
frequency, directly low-pass filtering the signal or by modeling
an additional state in the Kalman filter such as in (12). To
demonstrate DC tracking, we excite the piezoelectric cantilever
at its first three flexural modes and add a step bias voltage to
the driving signal. In response to the bias voltage applied to
the piezoelectric layer, the resonances of the cantilever shifts
[40] causing a reduction in oscillation amplitude which can be
observed in Fig. 12. Further, it can be noticed that the Kalman
filter at maximum bandwidth estimates the DC offset with
some overshoot which can be accommodated for by reducing
the assumed covariance valueQ of that respective state. In
comparison, a standard2nd-order LPF with cut-off frequency
of 3 kHz cannot achieve the same bandwidth. Increasing the
cut-off frequency to10 kHz, yields insufficient suppression of
the lowest frequency component present in the signal.

The estimated static deflection of the cantilever can be used
as an additional imaging channel during a dynamic AFM
experiment as it is not constrained by the z-axis feedback loop.
For the polymer sample under investigation, it can be observed
in Fig. 13, that the DC image yields better contrast than the
controller topography channel, comparable to the increased
contrast of the higher eigenmode channels.

C. Trimodal AFM Imaging

The two component polymer was imaged using trimodal
AFM, i.e. by actively driving the first, second and third
eigenmodes of the piezoelectric cantilever. While the z-axis
feedback controller maintains a constant amplitude at the
fundamental frequency by commanding the z-actuator, the
higher modes are left uncontrolled and can respond freely to
sample features. As such, the contrast observed in the higher

eigenmode phases is often used to distinguish between mate-
rial properties [13]. The experimental results are presented in
Fig. 14; a plane correction has been applied to the topography
image.

Due to limitations on the number of high-speed DAC
channels of the I/O card used and given the fact that one
channel had to be used to drive the cantilever, only one more
imaging channel was available. As such, the same sample
area was imaged multiple times with the available output
channel iteratively set to the quantities of interest as shown
in Fig. 14. Moreover, we note that the z-axis feedback loop
was closed using the amplitude of the fundamental mode
obtained from the internal LIA, due to the same channel
limitations. However, it was shown in earlier work that the
Kalman filter fundamental amplitude estimate can be used as
the feedback signal without loss of image quality [24]. From
the phase image shown in Fig. 14(d), the imaging condition
can be derived as being attractive on the PS matrix and
repulsive on the LPDE islands for the fundamental mode.
The switch between the different imaging regions is one of
the main reasons for the strong material contrast observed
in the phase signal. As the higher eigenmodes are driven
freely, the amplitude channels also provide some contrast.
Specifically the third eigenmode seems to be more sensitive
to the borderline region around the LPDE islands, which may
be explained by the increased stiffness of that mode.

VII. C ONCLUSION

In this work, we have presented a demodulator based on
the system theoretical modeling of multiple sinusoids, which
is implemented in the form of a Kalman filter. Specifically,
the time-variant formulation of the model allows for a high-
speed, highly parallelized implementation on a Field Pro-
grammable Gate Array without the numerical complications
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usually associated with estimators of resonant systems. We
show that the implemented Kalman filter is superior in terms
of tracking bandwidth over the widely used lock-in amplifier.
This is particularly true when the tracking bandwidth is close
to the carrier frequency and when lower frequencies limit the
maximum low-pass filter bandwidth of the lock-in amplifier.
This is of special interest for applications in multifrequency
AFM, where the frequency of the fundamental mode will
limit the achievable tracking bandwidth when demodulation
is performed by a lock-in amplifier. The flexibility and perfor-
mance of the proposed multifrequency Kalman filter is verified
during trimodal AFM imaging of a soft polymer compound,
highlighting the well-known increased phase contrast of higher
order modes due to material property changes. Additional
insight can be gained from the static deflection of the can-
tilever, a measurement that is usually discarded in conventional
dynamic AFM imaging.
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