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Resonant Control of Structural Vibration Using
Charge-Driven Piezoelectric Actuators
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Abstract—Driving piezoelectric actuators by charge, or current
rather than voltage is known to significantly reduce the hysteretic
nature of these actuators. Although this feature of piezoelectric
transducers has been known to the researchers for some time, still
voltage amplifiers are being used as the main driving mechanism
for piezoelectric devices. This is due to the perceived difficulty
in building charge/current amplifiers capable of driving highly
capacitive loads such as piezoelectric actuators. Recently, a new
charge amplifier has been proposed which is ideal for driving
piezoelectric loads used in applications such as active damping
of vibration. Consequently, it is now possible to effectively, and
accurately control the charge deposited on the electrodes of
a piezoelectric transducer, and thereby avoid hysteresis alto-
gether. This paper further investigates properties of piezoelectric
transducers driven by charge sources when used with resonant
controllers for structural vibration control applications. The paper
reports experimental results of a multivariable resonant controller
implemented on a piezoelectric laminate cantilever beam.

Index Terms—Charge control, flexible structures, hysteresis,
piezoelectric, resonant controllers, vibration control.

I. INTRODUCTION

ALARGE number of materials exhibit piezoelectricity, to
some degree. When a piezoelectric material is mechan-

ically stressed it develops an electrical charge across its termi-
nals. This is known as the direct piezoelectric effect. Conversely,
an electric field, or charge, applied to the same material will re-
sult in a change of its mechanical dimensions, which will re-
sult in mechanical strain. This property is referred to as the con-
verse piezoelectric effect. Therefore, piezoelectric materials can
be used as sensors, actuators, or in some applications as both.

There exist a certain class of ceramic materials, which, in
their raw form, do not possess piezoelectric properties; however,
piezoelectricity can be initiated in them. Ceramic materials,
which fall within this category are: Lead-Zirconate-Titanate
(PZT), Lead-Titanate , Lead-Zirconate ,
and Barium-Titanate . A true piezoelectric material
is formed as a single crystal. A piezoelectric ceramic material,
on the other hand, has a multicrystalline structure made up
of large numbers of randomly oriented crystal grains, each
with its own electric dipole. This random orientation of the
grains results in the net cancellation of the electric dipoles.
To initiate the piezoelectric effect in the ceramic material, its
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temperature is raised to just below the Curie temperature [1],
and is then subjected to a large dc electric field. This is known
as the “poling process.” After the material is poled, the electric
dipoles are aligned with the applied electric field, and the
material will possess piezoelectric properties.

When driven by a voltage amplifier, piezoelectric actuators
display nonlinear behavior known as hysteresis. The existence
of hysteresis in piezoelectric materials is generally attributed to
residual misalignment of crystal grains in the poled ceramic [1],
[2]. It has been argued that hysteresis is an electrical property of
piezoelectric materials, which mainly exists between the applied
electric field and the resulting electrical charge [3]. Indeed, it
has been demonstrated that by controlling electrical charge, or
current rather than the applied voltage, the hysteresis effect can
be substantially reduced [4].

The existence of hysteresis has been shown to have an ad-
verse effect on the stability and closed-loop performance of
voltage-controlled piezoelectric actuators. In [5], the authors re-
port experimental results to illustrate that when a piezoelectric
stack actuator is being used in a feedback loop with a voltage
amplifier the gain and phase margins of the system deteriorate
significantly compared to the situation in which the same ac-
tuator is driven by a charge amplifier. In particular, the authors
report 28% improvement in the phase margin by using charge
as the driving mechanism.

A large number of techniques have been developed that
are aimed at reducing the effect of hysteresis associated with
voltage-driven piezoelectric actuators (see [6] and the refer-
ences therein). In particular, methods such as inversion-based
Preisach modeling [7] and phase control [8] are two examples
of the proposed techniques. The former is a complicated and
time consuming procedure which assumes that the hysteresis
associated with the piezoelectric actuators is of rate independent
type,1 while the latter approach is only applicable if the driving
signal is of fixed amplitude. There have also been efforts to
model hysteresis as a disturbance, and thereby minimize its
effect using a disturbance decoupling controller [10].

The best approach to deal with hysteresis in piezoelectric ac-
tuators appears to be to use charge, or current to drive the ac-
tuator since this would render the actuator linear. Even though
this approach has been known for some time, it has not been
widely used due to the perceived difficulty of driving highly ca-
pacitive loads. The main problem being the existence of offset
voltages in the charge or current source circuit, which will even-
tually charge up the capacitive load. This will then distort the
control signal being applied to the piezoelectric load. This issue

1Hysteresis present in piezoelectric materials is known to be rate dependent
[9].
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has been pointed out by a number of authors [11], [12]. Re-
cent research [13] proposes a new structure for charge and cur-
rent sources capable of regulating the dc profile of the actuator.
This concept will be discussed further in Section IV. Due to this
development, it is now possible to use electrical charge as the
driving control signal for piezoelectric actuators in structural
control applications.

Flexible structures are highly resonant systems, which have
an infinite number of vibratory modes. In most practical appli-
cations, however, one is often only interested in controlling a
limited number of them. A controller can be designed using a
model that describes dynamics of the system within the band-
width of interest. Existence of out-of-bandwidth dynamics,
however, could be problematic as high frequency modes may
destabilize the closed-loop system, if their presence is not
taken into account during the control design phase. One way
of overcoming this hurdle is to use collocated piezoelectric
sensors and actuators. The collocated structure allows for the
design of controllers with guaranteed stability in presence of
out-of-bandwidth dynamics. Resonant controllers have been
designed for and implemented on voltage-driven piezoelectric
laminated structures [14], [15]. If charge, or current sources
are to be used to drive piezoelectric actuators, the structure of
resonant controllers needs to be modified accordingly. This
paper explains how this can be done.

A property of resonant controllers designed for charge-driven
piezoelectric actuators is that they can be engineered to roll off
at higher frequencies. This is in contrast to their voltage-driven
counterparts which do not possess this important property. This
is particularly significant in flexible structures where one would
wish to reduce the effect of out-of-bandwidth dynamics on the
stability of the closed-loop system.

The remainder of this paper continues as follows. Section II
is concerned with the dynamics of multivariable piezoelectric
laminates with collocated piezoelectric sensors and actuators.
Section III is concerned with resonant control of multivariable
piezoelectric laminates with voltage-driven piezoelectric actu-
ators. Section IV discusses benefits of using charge, or current
for driving piezoelectric actuators. Section V studies dynamics
of charge-controlled piezoelectric actuators and Section VI
suggests how the resonant control structure can be modified
to work with charge-driven piezos. Section VII proposes a
number of ways that parameters of a resonant controller can be
determined, and Section VIII reports our experimental results.
Finally, Section IX discusses some observations and Section X
concludes this paper.

II. VOLTAGE-DRIVEN PIEZOELECTRIC ACTUATORS

Piezoelectric actuators are often driven by voltage amplifiers,
which are generally expensive due to the highly capacitive na-
ture of piezoelectric loads, and the large voltages necessary to
operate them. Moreover they only offer control over a limited
bandwidth. Nevertheless, the bulk of the literature on feedback
control of piezoelectric laminates is based on voltage-driven
piezoelectric actuators, e.g., see [14], [16]–[23], and the refer-
ences therein.

Fig. 1. Flexible structure with several collocated piezoelectric actuator/sensor
pairs.

To allow for efficient control of several vibratory modes of
a structure, it may be necessary to use a multivariable control
strategy. Consider the system depicted in Fig. 1, where collo-
cated piezoelectric sensor/actuator pairs are bonded to a flexible
structure. It is well-known [14], [24]–[27] that the multivariable
transfer function matrix of this system can be expressed as

(1)

where is an vector, and . In practice, however,
the integer is finite, but possibly a very large number which
represents the number of modes that sufficiently describe the
elastic properties of the structure under excitation [28], [29].

Also shown in Fig. 1 is a number of disturbances acting on the
structure. This could represent point forces, distributed forces
(such as a wind gust) or torques. The transfer function matrix
relating the disturbance vector to the vector of voltages
measured at the sensors can be written as

(2)

where is a matrix, assuming there are disturbances
acting on the structure.

In a typical control design problem, structural models are
often simplified by truncating the series (1) or (2). Doing this,
however, may result in substantial error associated with system
zeros, which may reduce the performance of a designed con-
troller once implemented on the system. These truncation er-
rors are particularly significant for collocated transfer functions

. As explained in [30] and [31], these errors can be min-
imized by adding a feed-through term to the truncated model.
That is, by approximating (1) by

(3)

where .
For the single-input–single-output (SISO) case, i.e., when

represents the transfer function associated with only
one collocated actuator/sensor pair, this system is known to
possess interesting properties [32], one being the system is min-
imum phase, another being the poles and zeros of the system
interlace. This ensures that the phase of the collocated transfer
function will be within the 0 to range. Subsequently,
a differentiator would stabilize the system by increasing the
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effective damping of the system. This is referred to as direct
velocity feedback control [33]. Obviously, there are complica-
tions associated with this technique, the most notable being the
controller is improper, and therefore needs to be approximated
by a proper one. Hence, the need for careful gain stabilization
at higher frequencies. Furthermore, the control effort may be
larger than necessary, particularly at frequencies far away from
resonance frequencies.

To alleviate this difficulty a number of fixed structure con-
trollers have been proposed in the literature, all of which have
resonant structures reminiscent of the underlying system that is
to be damped. Acceleration feedback [33] and positive position
feedback [34] controllers being the two most notable examples.

III. RESONANT CONTROLLERS FOR VOLTAGE-DRIVEN

PIEZOELECTRIC ACTUATORS

The structure of the collocated system, as expressed by (1)
allows for the design of feedback controllers with specific struc-
tures that guarantee unconditional stability of the closed loop
system.Suchcontrollersareof interestdue to their ability toavoid
closed loop instabilities arising from the spill-over effect [35].

Typically, one may only be interested in controlling the first
modes of (1). If a controller is designed based only on the

mode model of the system, the existence of modes and
higher may destabilize the closed loop system, once the con-
troller is implemented. Resonant controllers have the distinctive
property that closed loop stability of the system is guaranteed in
presence of these out-of-bandwidth modes.

Two possible resonant controllers are

(4)

and

(5)

where typically . Note that both and are
vectors.

The typical feedback control problem associated with system
(1) and a resonant controller is illustrated in Fig. 2. Here,

is the vector of voltages measured at the piezoelectric sen-
sors, while is the vector of disturbances acting on the struc-
ture. The purpose of the controller is to negate the effects of dis-
turbances by increasing the effective damping of the structure.
This is achieved by shifting the closed loop poles of the system
deeper into the left half of the complex plane.

Closed-loop stability for the multivariable collocated system
(1) under (4) and (5) can be proved in a number of ways. A proof
is given in the Appendix.

To this end we point out that resonant controllers (4) and (5)
are multivariable versions of the SISO resonant controller pro-
posed by the first author and colleagues in [15]. They are also
closely related to resonant shunt controllers as described in [36]
and [37]. These controllers, if designed properly, are known
to offer good performance in terms of adding damping to the
structure.

Fig. 2. Feedback control of vibration using voltage-driven collocated
piezoelectric actuator/sensor pairs.

Fig. 3. Electrical equivalent of a collocated piezoelectric actuator/sensor pair
incorporating the effect of hysteresis.

IV. CHARGE CONTROL VERSUS VOLTAGE CONTROL

The resonant controllers (4) and (5) will raise two signifi-
cant problems when voltage is used to drive the piezoelectric
actuators.

Typically the frequency response of a flexible structure with
collocated piezoelectric transducers rolls off very slowly at high
frequencies.2 A controller that rolls off is therefore preferable.
The first problem therefore arises form the fact that voltage
driven resonant controllers do not roll off quickly at higher fre-
quencies. Although, the stability of the closed loop system under
(4) and (5) is guaranteed, because of the asymptotic behavior
of (4) and (5) the performance of the closed loop system may
suffer from high-frequency noise and the inevitable phase lag
introduced by the sensor.

The second complication is due to the hysteretic nature of
piezoelectric actuators when driven by voltage amplifiers. As il-
lustrated in Fig. 3, each piezoelectric transducer can be modeled
as the series connection of a voltage source, which is propor-
tional to the total strain in the piezo, a capacitor and a nonlinear
element [3]. The nonlinearity is of the hysteresis type and
is much more profound when the actuator is operated at high
voltages.3

This clearly suggests that when possible electrical charge
rather than voltage should be used to drive piezoelectric
actuators. The reason why charge, or current sources have not
been extensively used to drive piezoelectric transducers can be

2This situation can be improved by reducing the dimensions of piezoelectric
transducers [38]. This would come at the price of reduced controller authority
over the structure, and cannot be recommended for all applications.

3It is usually argued that when a piezoelectric actuator is being operated at low
voltages, hysteresis becomes almost negligible. Restricting the level of control
voltage, however, is not advisable since the actuator is not being used to its full
potential.
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attributed to the perceived difficulty in implementing devices
capable of driving highly capacitive loads such as piezoelectric
actuators. Existence of offsets in conjunction with the uncon-
trolled nature of the output voltage generally results in the
capacitor being charged up. Once the output voltage reaches
the power supply rail, the output becomes saturated, and the
amplifier fails to perform properly.

This issue can be resolved by adding an extra feedback loop
to the standard charge/current amplifier structure, as proposed
in [13]. To understand the operation of the system, consider
the simplified schematic of a compliance feedback for a cur-
rent or charge source shown in Fig. 4. The device functions as a
charge amplifier if the impedance is a capacitor, and
as a current amplifier if is a resistor, . When oper-
ated in the charge mode, and neglecting the compliance con-
troller , the high gain feedback works to equate the
applied reference to the voltage measured across
the sensing capacitor . In the Laplace domain, at frequencies
well within the bandwidth of the control loop, the load current

is equal to . When is a resistor ,
and the circuit operates as a current ampli-

fier with gain . If is a capacitor , then
, which means the circuit functions as a charge am-

plifier with gain . Effective dc regulation of the
compliance voltage can be achieved using a PI compliance con-
troller. Indeed, it can be proved that a PI controller completely
suppresses the dc component of . For a thorough discussion
of properties of the compliance feedback-based charge/current
amplifier the reader is referred to [13].

It needs to be pointed out that although this charge amplifier
is well suited for damping purposes, it is of little use in appli-
cations that include positioning, e.g., [39], [40]. A DC accurate
charge amplifier is currently under development, and will be re-
ported in due course.

V. FEEDBACK STRUCTURE OF CHARGE-DRIVEN

PIEZOELECTRIC LAMINATES

In order to analyze the effect of using charge rather than
voltage in vibration control applications, let us define the fol-
lowing parameters:

...
...

...

. . .
...

where is the vector of voltages applied to the piezoelectric
actuators, is the vector of voltages measured from the piezo-
electric sensors, is the vector of disturbances acting on the
beam, is the capacitance associated with each collocated
piezoelectric patch, and represents the vector of electrical
charges.

Fig. 4. Current/charge amplifier with added compliance feedback.

Fig. 5. Collocated charge control of one piezoelectric actuator/sensor pair.

Some of the assumptions made here are: i) piezoelectric ac-
tuator/sensor pairs are bonded to the structure; ii) each pair con-
sists of two identical transducers, however, not all transducers
are necessarily identical; iii) disturbances are acting on the
structure; iv) the controller is fully multivariable; and v)
represents capacitance of the th transducer.

Writing the KVL around the th loop, as illustrated in Fig. 5,
we obtain4

Using the previous notation, this implies

(6)

Since

(7)

where is the charge controller, and

(8)

which follows from the linearity of the system, the feedback
structure illustrated in Fig. 6 can be obtained. Here, is the
multivariable transfer function matrix of the collocated system
(1). is also a multivariable transfer function matrix,
with a structure specified in (2).

It can be verified that the multivariable transfer function ma-
trix relating to is given by

(9)

4Note that this is consistent with the sensor equation in [21].
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Fig. 6. Feedback structure associated with charge-driven piezoelectric
actuator/sensor pairs.

A point that is needed to be clarified here is what happens
when in (9). When the piezoelectric actuators are driven
by voltage amplifiers, and (see Fig. 2) is set to zero, the
closed loop transfer function matrix of the system reduces to

. However, if in (9) is set to zero, the closed loop system
reduces to

(10)

When , the piezoelectric actuators are effectively
short-circuited. However, means the actuators are left
open-circuited. Although the difference between the response in
these two cases may come as a surprise, it does make a differ-
ence if piezoelectric transducers are open- or short-circuited. To
appreciate this, we point out that (9) can be rewritten as

(11)

which suggests the feedback structure in Fig. 7.

VI. RESONANT CONTROLLERS FOR CHARGE-DRIVEN

PIEZOELECTRIC ACTUATORS

Identification of the feedback structure associated with a
charge-driven piezoelectric laminate leads to an important
observation: If the piezoelectric actuators were to be driven
by voltage amplifiers, rather than charge amplifiers, and if
the underlying system were linear, then the two closed-loop
systems would be identical as long as

(12)

This observation becomes especially useful in terms of de-
veloping resonant control structures for charge-driven systems.
Given that for an arbitrary the equivalent charge con-
troller is

(13)

if is chosen to be either or , as defined in
(4) and (5), with the additional constraints

(14)

and

(15)

Fig. 7. Feedback control system with charge-driven piezoelectric actuators.

we obtain the following resonant controllers for equivalent
charge-driven systems:

(16)

and

(17)

It can be observed, from (16) and (17), that resonant con-
trollers for charge-driven piezoelectric actuators will be strictly
proper as long as conditions (14) and (15) are enforced. In the
SISO case, controllers (16) and (17) will roll off quickly at 20
and 40 dB per decade respectively. This is a favorable prop-
erty that is not present for the voltage driven case as discussed
previously.

It should be noticed that conditions (14) and (15) could limit
the closed loop performance of resonant controllers since they
impose a hard constraint on the structure of the controller. De-
spite this, good performance can still be obtained using these
controllers as illustrated, experimentally, in Section VII.

Closed-loop stability of the charge-driven system under (16)
and (17) is closely related to the voltage-driven system, and is
discussed in the Appendix.

VII. EXPERIMENTAL TESTBED

Experiments were performed on a cantilever beam with two
collocated piezoelectric pairs. One pair was located close to the
clamped end and the other closer to the free end of the beam. For
each collocated pair, one piezoelectric patch was used as an ac-
tuator, and was driven by a charge amplifier, while the voltage
induced in the other patch was used as the measurement. An-
other piezoelectric actuator was bonded to the beam, somewhere
between the two actuating patches. This transducer was driven
by a voltage source to apply a disturbance to the beam. The
transducer collocated with this actuator was short circuited so
that it would not add any loading on the structure. A Schematic
of the experimental testbed is demonstrated in Fig. 8, a picture
of the actual beam is shown in Fig. 9.

The purpose of the experiment was to design and implement
a two-input–two-output resonant controller to regulate the tip
displacement of the beam in face of vibrations arising from a
disturbance voltage applied to the third actuator. For the pur-
pose of designing such a controller an accurate model of the
cantilever beam was needed. The modeling process is detailed
in the remainder of this section.
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Fig. 8. Beam arrangement.

Fig. 9. Picture of the cantilever beam.

A. The Hysteresis Effect

To demonstrate the presence of hysteresis one of the piezo-
electric actuators was first driven by a voltage source and then
subsequently by a charge source. The voltage induced in the
collocated piezoelectric transducer was measured and recorded.
The actuating signal in each case was a linearly decaying single-
tone sinusoid of 24 Hz. At this frequency the corresponding
transfer function has zero phase. Therefore, any deviation from a
straight line on the input–output plot is purely due to hysteresis.

In this experiment, the amplitude of the charge signal was
adjusted to ensure that the measured voltage at the collocated
piezoelectric transducer was at a comparable level to that mea-
sured when the actuator was driven by a voltage source. The
results are illustrated in Fig. 10(a) and (b). The presence of hys-
teresis when the actuator is driven by a voltage source is evident
from Fig. 10(a). However, when a charge source is used, hardly
any hysteresis can be observed. This agrees with similar results
discussed in [11] and [12]. In particular, it has been reported that

piezoelectric actuators exhibit up to 80% less hysteresis when
driven by charge amplifiers [4], [41]. In other words, in a piezo-
electric transducer hysteresis mainly exists between the voltage
and mechanical strain, rather than the charge (or current) and
strain [3].

It should be pointed out that hysteresis is not a major source
of difficulty with piezoelectric sensors. The use of a buffer cir-
cuit with very high input impedance will significantly reduce
the effect of hysteresis in the sensor. A similar strategy for the
actuator does not exist.

B. State–Space Model of the Composite System

Assuming, for a moment, that all actuators are being driven
by voltage amplifiers, the multivariable plant can be represented
by the following state–space equations:

(18)

(19)

(20)

where represents the state vector of the system, is
the number of modes included in the model, and and

represent the disturbance and control input voltages,
respectively.

Substituting (6) into (20), we obtain

(21)

Equation (21) can now be substituted into (18)–(20) to obtain
the multivariable state space representation for the plant when
the actuating patches are being driven by charge sources. The
resulting system is

(22)

(23)

(24)
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Fig. 10. Plot of the output voltage versus (a) the input voltage and (b) the input
charge.

where

The reader would notice that the dynamics of the plant are dif-
ferent depending on whether charge or voltage is used to drive
the actuating patches. This is reflected in the different state ma-
trices associated with the systems represented by (18) and (22).

Fig. 11. Augmented multiple-input–multiple-output (MIMO) plant.

Furthermore, as evidenced from (18) and (22) the charge driven
state-space equations are expressed in terms of , , , and
matrices associated with the voltage-driven case. Therefore, to
successfully construct the charge-driven equations, it is neces-
sary to accurately identify the values of these matrices.

These values can be derived from the structural properties and
dimensions of the beam and its boundary conditions as demon-
strated in [14]. In this paper we used a system identification ap-
proach, which is detailed in Section VII-D.

C. Structure of the State-Space Model

The physical modeling for the voltage driven scenario is
well understood [14], [24] and uses derivations from the
Euler–Bernoulli beam equation to determine the transfer func-
tion from input voltages to output voltages (or output
tip displacement ). From these derivations, it has been
shown that the , and matrices (for the voltage driven
case) are of the form

. . . (25)

...
...

... (26)

(27)

where and correspond to the natural frequency and
damping ratio of the th vibrational mode of the structure, ,

and are values that correspond to the input disturbance
and control input voltages ( and ) respectively, and

, and are values that correspond to the output tip
displacement and induced output voltages ( and ) re-
spectively. Note that (26) and (27) can be equally expressed in
terms of the notation used in (1) and (2).

Since the cantilever beam has two collocated pairs of piezo-
electric transducers (Fig. 8) we can make the following simpli-
fication and set and [24], [38].

The matrices ( , and ) are then used in (22)–(24) to ob-
tain the charge driven state space equations for the plant.

In the experiment only the first three vibrational modes of the
beam were considered, i.e., . We therefore had to include
a feed-through term to compensate for the misalignment of
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Fig. 12. Identified model with measured data.

the in-bandwidth zero locations that arises from the inability to
model the higher order modes of the structure [30], [42].

D. System Identification

To obtain a model of the plant, suitable for control design
purposes, a three-input–three-output model as illustrated in
Fig. 11 was identified. The first input corresponds to the dis-
turbance voltage applied to the middle patch. The second
and third inputs are the charges ( and ) applied to the first
and second actuators respectively. The first output corresponds
to the displacement measured at the tip of the cantilever .
The second and third outputs are the voltages ( and )
measured at the first and second piezoelectric transducers,
respectively.

To model the plant we measured all nine frequency responses
for each input-output combination. These frequency responses
were obtained by applying a sinusoidal chirp signal of varying
frequency (from 5 to 250 Hz) to the piezoelectric actuators and
measuring the corresponding output signals of interest (namely
the output voltages from the collocated sensors and the dis-
placement at the tip of the beam ). The input/output data was

processed in real time by the Polytec laser scanning vibrometer
(PSV-300) software to obtain the desired frequency responses.
An optimization problem was set up and solved to obtain the
“best fit” state space model by minimizing the normalized least
squared error between the simulated and measured data.

Prior to running the optimization, the values of and for
each mode were fixed (i.e., the matrix is fixed). This signif-
icantly reduces the numerical complexity of the optimization
problem that is to be solved. In fact, the natural frequencies
and damping ratios can be obtained, and fine tuned with rela-
tive ease by measuring the location and height of the peaks from
the measured frequency responses. Another approach is to per-
form a sub-space system identification on one of the channels,
which would yield a good initial guess for the values of and

for each mode. Once the matrix is fixed, only numerical
values of the , , and matrices need to be determined using
the optimization.

The results of the magnitude Bode plots are illustrated in
Fig. 12, and demonstrate that the identified model closely
matches the experimentally measured data. Some interesting
observations can be drawn from these plots. The Bode plots
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Fig. 13. Bean setup and dimension.

Fig. 14. Experimental schematic.

corresponding to the first and second collocated actuator/sensor
pairs are found in the [2,2] and [3,3] positions, respectively. A
closer look at these plots reveals that the first mode is clearly the
dominant mode in the first collocated pair ([2,2]). Therefore,
one would expect the controller to have significant authority
over the first vibratory mode of the structure through this
actuator/sensor pair. However, the controller would have little
authority over the second and third modes as evident from the
low profile of these two modes in the ([2,2]) plot, if this pair
was to be used in a SISO setting. This situation is reversed for
the second collocated pair ([3,3]). The reason for this can be
explained by examining the first three vibrational mode shapes
of a cantilever beam in Fig. 15 [24]. For an actuator to have
maximum authority over a given mode it must be placed at
the location where the curvature5 is greatest for that particular
vibrational mode [38].

The aforementioned discussion should make it clear that it
may be nearly impossible to control a large number of vibra-
tion modes with only one actuator/sensor pair. To effectively
control a number of modes, one may need to use several col-
located actuator/sensor pairs along with a multivariable con-
troller. As indicated before, although the controller has little au-

5For a one-dimensional structure such as a beam strain is proportional to the
curvature [26].

Fig. 15. First three mode shapes for a cantilever beam.

thority over the third mode through the first actuator/sensor pair,
it would have good authority over this mode through the second
actuator/sensor pair and also through the first actuator and the
second sensor, as evident from ([2,3]).
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Fig. 16. Bode plot of the resonant H controller.

If we now return to the plots [2,2] and [3,3], the reader will
notice that the collocated arrangement for these two plots can
easily be deduced from there peak-trough alternating pattern.
Further evidence to such a collocated arrangement is demon-
strated because the plots [2,3], [3,2] are nearly identical.

The largest mismatch is found in the [3,1] Bode magnitude
plot, where the model fails to properly match the measured data
around the first antinode. The reason for this is still not clear but
may be due to the low signal to noise ratio as measured by the
sensors.

The identified model was then used to design a number of
resonant controllers, which were subsequently implemented on
the system. This is detailed in the following subsection.

E. Controller Design

Two resonant controllers were proposed in Section VI. Of
the two controllers, (17) rolls off faster at higher frequencies,
and is therefore chosen as the candidate controller for the above
structure.

To obtain an effective controller, appropriate values for ,
and for each mode need to be selected. This can be

achieved in a number of ways. For example, by minimizing
the or norm of the closed loop transfer function from
disturbance voltage to tip displacement . However,

more than simply minimizing a specific measure, the ultimate
purpose of the controller is to add extra damping to the system
by shifting the closed loop poles of the plant deeper into the left
half of the complex plane. This will ensure that no matter where
a disturbance is entering the system the structural vibration is
minimized within the controlled bandwidth.

A number of performance measures were used to determine
appropriate parameters for the controller. Only two of these
methods are reported in this paper. The first controller was ob-
tained by minimizing the norm of , and the second by
placing the poles of the closed-loop system as far to the left of
the axis as possible.

The optimizations were carried out using the simplex search
algorithm in MATLAB. Before performing the optimization, the
values of were fixed such that condition (15) was satisfied.

The values of were chosen manually taking into account
the authority of the controller over each specific mode, through
either actuator. In practice this means the need to select rela-
tively large absolute numbers for the first mode associated with
the first actuator, and for the second and third modes associated
with the second actuator. The numbers must be chosen such that
(15) is satisfied. The values used in the experiments are

(28)
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The first and second row correspond to the first and second col-
located arrangements respectively. The column entries corre-
spond to their respective modes as well.6

Since the values are fixed, only the and values needed
to be determined using the optimization routine.

Minimizing the norm of the closed loop system yields
a resonant controller that adds damping to the structure, in a
roundabout way. The pole placement technique, however, is a
more straightforward approach since the physical location of the
closed-loop poles is intrinsically included in the cost function.
In this approach, the absolute distance between a prespecified
pole location and the actual closed-loop poles of the system is
minimized.

A Bode plot of the multivariable controller is shown in
Fig. 16. As can be noted, the diagonal entries correspond to the
collocated transfer functions. Also due to (15), the cross diag-
onal transfer functions are identical.

VIII. EXPERIMENTAL RESULTS

The experiments were performed in the Laboratory for Dy-
namics and Control of Smart Structures at the University of
Newcastle, Australia, and were carried out on a cantilever Euler
Beam with identical collocated PIC 151 piezoelectric patches,
with dimensions shown in Fig. 13. The disturbance voltage was
applied to a secondary patch located at the center of the beam
and the two collocated actuator-sensor pairs were used for feed-
back control purposes only. A Polytec laser scanning vibrom-
eter (PSV-300) was used to measure the velocity at the tip of
the beam.

In this experiment, the frequency responses were obtained
by applying a sinusoidal voltage signal of varying frequency to
the “disturbance” piezoelectric patch and measuring the corre-
sponding output tip displacement of the beam , with and
without the controller being switched on, using a similar proce-
dure as described in Section VII-D. The Polytec software was
again used to determine the corresponding frequency responses.

A schematic of the experimental testbed is shown in Fig. 14.
To carry out the experiments, the controller was downloaded
from Simulink onto a dSPACE DS-1103 DSP board with the
sampling rate set at 20 KHz. Low-pass antialiasing, and recon-
struction filters were added to the system. These were second-
order Butterworth filters with a cut-off frequency of 3 KHz.
The measured voltage for each piezoelectric sensor was passed
through a high-impedance buffer. This ensured the sensor sig-
nals were not distorted at low frequencies.

The measured and simulated open- and closed-loop Bode
magnitude plots for the optimized resonant controller are
given in Fig. 17(a) and (b), respectively. The same plots for the
pole placement optimization method are shown in Fig. 19. On
average these controllers reduced the resonant peak of the input
disturbance to output displacement transfer function
by 13 dB for each mode.

Time domain displacement step responses for the and
pole placement optimized resonant controllers are displayed in

6The choice of � as proposed here is rather ad hoc. It is possible, however, to
choose an appropriate value for � by making an initial guess and then incorpo-
rating that into the overall constrained optimization problem.

Fig. 17. Open- and closed-loop frequency response for input disturbance w
to output tip displacement Y using the H norm optimization. (a) Measured
data. (b) Simulation results.

Figs. 18 and 20, respectively. These plots were obtained by ap-
plying a low-pass filtered (250 Hz) step signal to the disturbance
patch and measuring the velocity at the tip of the beam. The ve-
locity was then integrated off line to obtain the corresponding
displacement. The open loop step response is also included in
these plots as a comparison. Both control schemes performed
well and reduced the settling time of the beam by a factor of 5.

In this experiment, the multivariable pole placement charge
controller was used to determine the equivalent voltage con-
troller via the (12). Then all unused piezoelectric transducers
were short circuited, and only the first controller channel was
left active. A comparison of the open-loop and closed-loop re-
sponses of the system in Fig. 22 as measured by the laser vi-
brometer with 10 and 200 volt swept-sine signals applied to
the disturbance patch, shows a performance degradation of over
1 dB at resonance, which is mainly due to the existence of hys-
teresis when the piezoelectric actuators are driven by voltage
amplifiers at high drives.
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Fig. 18. Displacement step response at the tip of the beam with and without
controller.

Finally, to illustrate the drawbacks of using voltage con-
trolled piezoelectric actuators a number of experiments
were performed using the first collocated piezoelectric actu-
ator/sensor pair. Fig. 21 presents the Bode plot of the first mode
of the system when the piezoelectric actuator closest to the
clamped end of the beam is driven by a voltage amplifier and
the voltage induced in the collocated sensor is taken as the
output. The two plots, one obtained using a swept-sine signal
with an amplitude of 2 volts and another with an amplitude
of 130 volts, clearly illustrate the effect of hysteresis. The
hysteresis manifests itself in the form of a phase lag of about
6.8 , and a shift in amplitude and resonance frequency.7

Closed-loop experiments were also conducted using a mul-
tivariable voltage controller which is (from a closed-loop
point of view) equivalent to the multivariable pole placement
charge driven controller via (12). All unused piezoelectric
transducers were short circuited, and only the first controller
channel was left active. A comparison of the open-loop and
closed-loop responses of the system in Fig. 22 as measured by
the laser vibrometer with 15 and 150 volt swept-sine signals ap-
plied to the disturbance patch, shows a performance degrada-
tion of over 1 dB at resonance, which is mainly due to the ex-
istence of hysteresis when the piezoelectric actuators are driven
by voltage amplifiers at high drives. The phase for the high
voltage scenario also has a uniform lag of 4.5 over the mea-
sured bandwidth. Unlike charge, these results clearly demon-
strate that the use of voltage to drive piezoelectric actuators can
result in performance degradation, due to the existence of hys-
teresis at high drives.

IX. OBSERVATIONS AND DISCUSSION

The two optimization schemes produced acceptable results.
Indeed the closed-loop response for these controllers demon-

7This is somewhat expected and is in line with observations made in [11] and
[8]. The first harmonic approximation of a hysteresis curve is an ellipse, which
amounts to a phase shift.

Fig. 19. Open- and closed-loop frequency response for input disturbance
w to output tip displacement Y using the pole placement optimization.
(a) Measured data. (b) Simulation results.

strate significant damping. The damping ratios associated
with each mode of the closed-loop system were determined for
each controller. The results are given in Table I. Notice that in
each case only the damping ratio associated with the pole closest
to the axis is shown.

It can be observed that the pole placement optimization
method provides the most damping for each mode. This can
be verified by looking at the closed-loop pole locations for
each optimization scheme (Fig. 23) since the closed-loop poles
associated with the pole placement method are located furthest
to the left from the imaginary axis.

X. CONCLUSION

This paper has demonstrated that charge driven piezoelec-
tric resonant controllers can successfully be used in structural
vibration control applications to reject unwanted disturbances
entering the plant. These fixed-structure controllers offer in-
teresting properties such as stability robustness in presence of
out-of-bandwidth dynamics, and good damping performance.
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Fig. 20. Displacement step response at the tip of the beam with and without
controller.

Fig. 21. Bode plot of the first mode of G , at low and high drives.

However, there are difficulties associated with their use when
voltage is used to drive the piezoelectric actuators. The hys-
teretic nature of the actuator, as well as the slow roll off of the
system, complicate the operation of the voltage driven feedback
controller. This paper explained how the structure of resonant
controllers can be modified when piezoelectric actuators are
driven by charge amplifiers. In this case the underlying system
is, to a large extent, free of hysteresis. Furthermore, the modi-
fied resonant controllers roll off quickly at higher frequencies,
which compensates for the natural slow roll off of the system.

APPENDIX

This appendix contains proof of stability of the closed
loop system under the two resonant controllers proposed in
Section III.

Theorem 1: Feedback connection of (1) and (5) is stable.

Fig. 22. Open-loop and closed-loop performance with high and low level
disturbances.

TABLE I
DAMPING RATIOS

Fig. 23. Comparison of the closed-loop pole locations for the different
resonant controllers (second quadrant shown only).

Proof: Stability of (1) and (5) is equivalent to the stability
of8 (see also [43])

8Here, and in the next theorem we are assuming that � > 0, d > 0 for all i.
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and

Now, it can be proved that is a positive-real (PR)
transfer function matrix, while is a strictly positive-real
(SPR) transfer function matrix. Negative feedback connection
of a PR and a SPR system is known to be stable [44]–[46].

Closed loop stability of (1) under (4) can be established by
constructing a Lyapunov function.

Theorem 2: Feedback connection of (1) and (4) is exponen-
tially stable.9

Proof: Feedback connection of (1) and (4) is stable if and
only if the closed loop system depicted in Fig. 24 is stable, where

and

Now, can be represented by the second-order
state–space equations

(29)

(30)

where

. . .

. . .

Furthermore, can be written as

(31)

(32)

where

. . .

. . .

9We point out that a similar proof is given in [47]. The proof included here is
for the sake of completeness.

Fig. 24. Feedback structure associated with charge-driven piezoelectric
actuator/sensor pairs.

Combining (29) and (30), the closed-loop system dynamics
can be obtained

(33)

Now, a Lyapunov function, can be defined as

(34)

Clearly, for all nontrivial , , , and .
Differentiating with respect to time yields

(35)

which implies

for nontrivial values of and . Therefore, the closed-loop
system is asymptotically stable.

The closed-loop charge-driven system under controllers (16)
and (17), is identical to the voltage-driven system under con-
trollers (4) and (5). Given that closed-loop stability of the latter
has been established, closed-loop stability of the former system
follows immediately.
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