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Abstract
Using standard microelectromechanical system (MEMS) processes to coat a microcantilever with a piezoelectric layer results in a

versatile transducer with inherent self-sensing capabilities. For applications in multifrequency atomic force microscopy (MF-AFM),

we illustrate that a single piezoelectric layer can be simultaneously used for multimode excitation and detection of the cantilever

deflection. This is achieved by a charge sensor with a bandwidth of 10 MHz and dual feedthrough cancellation to recover the reso-

nant modes that are heavily buried in feedthrough originating from the piezoelectric capacitance. The setup enables the omission of

the commonly used piezoelectric stack actuator and optical beam deflection sensor, alleviating limitations due to distorted frequen-

cy responses and instrumentation cost, respectively. The proposed method benefits from a more than two orders of magnitude

increase in deflection to strain sensitivity on the fifth eigenmode leading to a remarkable signal-to-noise ratio. Experimental results

using bimodal AFM imaging on a two component polymer sample validate that the self-sensing scheme can therefore be used to

provide both the feedback signal, for topography imaging on the fundamental mode, and phase imaging on the higher eigenmode.
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Introduction
Emerging methods in multifrequency atomic force microscopy

(MF-AFM) rely on the detection and excitation of higher order

eigenmodes of a microcantilever [1-3] and as such, present a

number of practical challenges to cantilever instrumentation.

Both high-bandwidth cantilever actuation and deflection

sensing are necessary, ideally without distorting the frequency

response of the cantilever and involving a minimum amount of

external equipment. For example, the commonly used piezo-

electric actuator at the base of the cantilever leads to a highly

distorted frequency response with numerous resonances which

renders the identification and subsequent analysis of higher

eigenmodes exceedingly difficult.

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:Michael.Ruppert@uon.edu.au
http://dx.doi.org/10.3762%2Fbjnano.7.26
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Figure 1: Simplified cross-section schematic of a beam with bonded piezoelectric layer. An electric field E3 applied to the piezoelectric layer causes a
cantilever deflection in the z-direction. Conversely, a deflection in the z-direction causes stress in the x-direction ε1(x), which leads to a charge accu-
mulation on the piezoelectric layer.

To circumvent this problem, integrated actuation such as mag-

netic [4], photothermal [5], resistive thermal [6], ultrasonic [7]

or through a piezoelectric layer [8] have been employed.

Among the sensing techniques to detect the cantilever oscilla-

tions, the optical beam deflection (OBD) method [9] remains

the most widely used approach mostly due to its low noise char-

acteristics. However, its limitations such as frequent laser align-

ment, imaging artifacts due to optical interferences [10] and

limited bandwidth requiring custom-built read-out electronics

[11,12] have led to the development of numerous integrated

sensing approaches. These include capacitive [13], piezoresis-

tive [14], piezoelectric [15] and magnetoresistive [16] sensing.

A common drawback of self-sensing approaches applied to

microelectromechanical systems (MEMS) is the fact that drive

and sense electrodes share a common node (the MEMS elec-

trical network) resulting in a potentially large feedthrough path

from actuation to sensing [17]. If not properly accounted for,

this feedthrough can almost entirely conceal the signal origi-

nating from the motion of the structure and is especially domi-

nant if the same transduction principle is used for both actua-

tion and sensing. Recently, the authors proposed two reciprocal

self-sensing schemes for tapping-mode atomic force microsco-

py (TM-AFM) utilizing charge sensing and charge actuation re-

spectively [18,19], using a single piezoelectric layer. The pro-

posed techniques enable the elimination of the piezoelectric

base actuator and the OBD sensor from the cantilever instru-

mentation setup, avoiding tedious laser alignment and distorted

frequency responses. In this contribution, we demonstrate that

the self-sensing method can be extended to MF-AFM tech-

niques such as bimodal imaging by measuring the charge simul-

taneously at multiple higher eigenmodes. However, the indi-

vidual resonances are heavily buried in feedthrough originating

from the piezoelectric capacitance which yields a dynamic

range of less than 1 dB at the resonant modes. In order to

recover these modes for subsequent application in MF-AFM,

two parallel analog feedforward compensators are employed to

cancel the feedthrough at each eigenmode leading to a substan-

tial increase in dynamic range. We demonstrate that on the

higher eigenmode, a two order of magnitude increase of sensi-

tivity is achieved due to the large deflection to strain sensitivity.

The applicability of the multimodal self-sensing principle is

verified by bimodal AFM experiments to obtain qualitative

phase contrast on the higher eigenmode when imaging a soft

polymer blend.

Modeling
Piezoelectric constitutive laws
By sputtering a piezoelectric layer to the surface of a cantilever,

a transducer with inherent self-sensing capabilities is obtained.

The electromechanical equations describing the independent

variables applied stress σ [N/m2] and applied electrical field E

[V/m] and the dependent variables resulting strain ε [m/m] and

resulting electrical displacement D [C/m2] within a piezoelec-

tric material are governed by the IEEE standard on piezoelec-

tricity [20]. They are usually written in compact matrix nota-

tion such that redundant and symmetrical terms are accounted

for. By convention of the axis defined in Figure 1, an electric

field or a deflection in the (3)-direction causes normal stress in

the (1)-direction [21]. Then, the constitutive equations reduce to

two scalar equations

(1)

(2)
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with Young’s modulus Y [N/m2], piezoelectric d [m/V] and

dielectric ξ [F/m] material constants. The superscripts E and σ

indicate that these constants are measured during constant elec-

trical field (electrodes short-circuited) and constant stress (elec-

trodes open-circuited), respectively. Here, Equation 1 states that

the total strain is the sum of the mechanical strain due to me-

chanical stress (passive) and the strain caused by applying an

electrical field (active) and therefore describes the transducer if

used as an actuator, i.e., the converse piezoelectric effect. On

the other hand, Equation 2 states that the total electrical dis-

placement is the sum of induced electrical displacement due to

mechanical stress (sensing) and applied electrical field

(feedthrough) and therefore describes the transducer if used as a

sensor, i.e., the direct piezoelectric effect.

In the following we assume an Euler–Bernoulli beam with ho-

mogeneous isotropic linear elastic material with constant cross

section and perfect bonding of the piezoelectric layer which is

thin and lightweight compared to the beam. The assumption

implies a linearly varying strain distribution throughout the

beam and enables analytical actuator and sensor equations to be

derived [22].

Piezoelectric actuator
For a piezoelectric layer with thickness tp, applying a voltage V

across the electrodes along the polarization direction, generates

the electrical field

(3)

and results in the free strain

(4)

Further, the asymmetrical strain distribution along the (1)-axis

in the actuator as shown in Figure 1 can be stated as [23]

(5)

By equating Equation 1 and Equation 5 and using Hooke’s law,

the stress distribution in the actuator is found to be

(6)

By applying the moment equilibrium around the center of the

beam and the force equilibrium along the (1)-axis of the beam,

α and ε0 can be determined. By further integrating Equation 6

across the beam, the distributed moment as a function of the

applied voltage is found to be [23,24]

(7)

where Ib and Yb are the moment of inertia and Young’s modulus

of the beam and α(V) contains geometrical constants of the

beam and the piezoelectric layer and is linear in the applied

voltage. Thus, a voltage applied to the electrodes results in a

bending moment causing the cantilever to deflect.

Piezoelectric sensor
With the foregoing assumptions, the stress in the (1)-direction is

given by Hooke’s law

(8)

where R is the bending radius which can be related to the

second derivative along the x-axis of the displacement

z ′ ′(x,t) = 1/R to yield

(9)

Here, stress is defined to be positive under elongation (tensile

stress) and negative under compression (compressive stress).

Assuming zero applied electrical field E, the electrical displace-

ment D due to bending stress is given by Equation 2. Hence, the

charge collected on the electrodes located at z = tb/2 + tp can be

determined by integrating the electrical displacement over the

electrode area

(10)

where κ = −d31(tb/2 + tp)wY31.

System model
The transverse deflection of a uniform cantilever (YI = const)

are governed by the Euler–Bernoulli beam equation, which for

the free vibration case are described by the partial differential

equation (PDE) [25]
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Figure 2: (a) Annotated photo, (b) schematic and (c) electrical circuit model of the piezoelectric cantilever.

(11)

where Y,I,ρ,A are Young’s modulus, area moment of inertia,

mass density and cross section of the beam respectively. A

common approach to solve Equation 11 is the modal analysis

approach. Here, it is assumed that the solution can be repre-

sented by separable space and time functions representing the

mode shape Zk(x) and modal coordinates qk(t)

(12)

with

(13)

(14)

For the case of a homogenous isotropic linear elastic beam with

constant cross section, the displacement and strain modeshapes

for varying standard boundary conditions can be derived analyt-

ically from Equation 14 [25]. Discontinuous beam models have

been proposed to take into account varying cross-sections but

system identification based on parameter optimization must be

employed to reduce modeling errors [26]. In order to arrive at a

system-based model and to use frequency domain system iden-

tification, a damping term is added to Equation 13 and taking

the Laplace transform yields a sum of second order modes to

describe the frequency response of the first n flexural modes of

the beam relating the actuator voltage V(s) to cantilever deflec-

tion D(s) [24]

(15)

where each second order mode is associated with a specific

vibrational mode shape and is characterized in terms of the

quality factor Qi, natural frequency ωi and gain αi. Similarly,

when a piezoelectric transducer is subjected to mechanical

strain it becomes electrically polarized, producing a charge on

the surface of the material, described by Equation 10. This

direct piezoelectric effect can be modeled as a strain dependent

voltage source Vp in series with a capacitor Cp as shown in

Figure 2c.

While the capacitor sufficiently represents the dielectric proper-

ties of the piezoelectric material, this simplified model does not

take into account dielectric losses or heat dissipation which can

be modeled by adding a resistor in parallel to Vp and Cp. The

model is a simplified version of the Butterworth–van Dyke

model as proposed by the IEEE Standard on piezoelectricity

[20]. The piezoelectric voltage Vp can be modeled as the linear

combination of the direct excitation voltage V(s) and a voltage

due to the tip–sample force acting as a disturbance W(s)

(16)

with

(17)
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Figure 3: Block diagram representing the transfer function from voltage actuation and tip disturbance to charge in the piezoelectric material.

Figure 4: Block diagram of the self-sensing scheme with dual feedforward compensator to cancel the capacitive feedthrough at two resonances.

(18)

Applying Kirchhoff’s law to Figure 2c, one obtains

(19)

Substituting Equation 16 into Equation 19 yields

(20)

which is illustrated in the block diagram in Figure 3.

We note that the charge in the piezoelectric layer depends on

the excitation voltage and the disturbance input but most impor-

tantly is dominated by a feedthrough term CpV(s). Conse-

quently, the disturbance will remain unnoticed in the charge

output if the feedthrough is large. Furthermore, while Gvw(s)

can be estimated [27,28], it cannot be measured directly. Thus

we focus on the system

(21)

to demonstrate the effect of the feedthrough. Observing that

each mode of Equation 15 and Equation 17 only differ by a con-

stant factor, Equation 21 can be rewritten as

(22)

From Equation 22 we conclude that by exciting the cantilever

with a voltage and measuring the charge, a deflection estimate

of the cantilever can be obtained if the feedthrough term CpV(s)

can be canceled.

Results and Discussion
Implementation
The proposed self-sensing scheme was realized using surface-

mount high-bandwidth analog components on a printed circuit

board (PCB) according to the block diagram shown in Figure 4;

a photo of the corresponding implemented circuit is shown in

Figure 5. Here, the block Hqv(s) models the dynamics of the

charge amplifier [18] and the blocks K1(s) = CpHqv(s) and

K2(s) = CpHqv(s) are feedforward compensators, each contain-



Beilstein J. Nanotechnol. 2016, 7, 284–295.

289

Figure 6: (a) Frequency response measured with the OBD sensor (−) of an NT-MDT NSG01 base-excited cantilever highlighting the first two flexural
modes. (b) Frequency response measured with the OBD sensor (−) and identified 12th-order model (−−) of the piezoelectric cantilever highlighting the
first six flexural modes. The inset shows a zoomed view of the fifth flexural mode. (c) Frequency response measured with the charge amplifier (−)
highlighting the first and fifth flexural modes. The insets show a zoomed view of the first, fifth and sixth modes embedded in capacitive feedthrough.

ing a model of the charge amplifier stage, to compensate the

feedthrough at each resonance. As the charge amplifier can be

approximated by a first order high-pass filter in the bandwidth

of interest [19], the feedforward compensators will have the

same dynamics and can be implemented with simple op-amp

circuits. After compensation, the outputs  and  are propor-

tional to the displacement at the respective mode.

Figure 5: Photo of the implemented PCB circuit for bimodal charge
sensing.

System identification
The AFM cantilever used in this work is a piezoelectric self-

actuated silicon microcantilever described in section Modeling.

Compared to a standard base excited cantilever whose frequen-

cy response is shown in Figure 6a, the piezoelectric cantilever

has closely spaced eigenmodes due to the stepped geometry

[29] and its frequency response is not distorted by additional

actuator dynamics owing to the integrated actuation. The clean

nature of the frequency response data, obtained by performing a

sinusoidal sweep (Zürich Instruments HF2LI lock-in amplifier),

allows for the use of frequency domain subspace identification

[30] to obtain a 12-order state space model for the first six

eigenmodes of the cantilever. The model along with the

measured data is shown in Figure 6b where only the flexural

modes have been included in the model (the torsional modes,

noticeable between M3 and M4 as well as in the vicinity of M5,

have been neglected). From the model, the fixed structure form

(Equation 15) for n = 6 is calculated with parameters shown in

Table 1.

The experimentally obtained voltage to charge frequency

response is shown in Figure 6c. We note that the first and fifth

modes, while almost entirely buried in feedthrough, show

nearly equal gains at the resonance peaks compared to the

voltage to deflection frequency response shown in Figure 6b.

This is due to the large deflection to strain sensitivity on the

higher mode which can be exploited by using a charge sensor.

In order to experimentally verify the model Equation 22, a pa-

rameter optimization procedure is employed to fit the model

Equation 22 to the experimentally obtained voltage to charge

frequency response shown in Figure 6c. The optimization

method aims to minimize the difference in magnitude and phase

of the measured transfer function and Equation 22. The result-

ing parameters are also shown in Table 1. We note that the opti-

mization procedure did not converge for the second, third and

fourth mode due to the excessive amount of feedthrough. The

differences in the estimated feedthrough of each mode is due to

numerical rounding occurring when scaling the optimization pa-

rameters back to real world quantities (pF) and due to slight

variations in the passive components of the analog implementa-

tion. Additionally, knowing that the capacitance is an inherent

property of the piezoelectric layer, an impedance analyzer such

as the Keysight E4990A was used to measure Cp and the ob-

tained value of 20.27 pF adequately matches the estimation.
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Table 1: Parameters of the fixed structure model.

M shape fi [kHz] Qi αi Cp [pF] δi

1 50.1 230 0.054 20.48 0.015

2 132.4 240 −0.004 — —

3 327.9 86 −0.008 — —

4 729.3 264 −0.0005 — —

5 962.5 322 0.004 19.82 0.17

6 1203.9 335 −0.002 19.71 −0.08

Figure 7: (a) Frequency response of the first flexural mode measured with the charge sensor before (−) and after feedthrough cancellation (−−). The
dynamic range has been increased from 0.7 to 25 dB. (b) Frequency response of the fifth and sixth flexural modes measured with the charge sensor
before (−) and after feedthrough cancellation (−−). The dynamic range has been increased from 0.9 to 26 dB.

Feedthrough cancellation
The first and the fifth modes are clearly visible in the frequency

response shown in Figure 6c albeit excessively buried in capaci-

tive feedthrough. In order to use the charge sensor for dynamic

mode AFM, the eigenmodes need to be recovered from the

capacitive feedthrough. Here, an analog feedforward compensa-

tion method was employed based on the block diagram shown

in Figure 4. It can be seen in Figure 7a how this compensation

method leads to an increase in dynamic range around the first

resonance from 0.7 dB to 25 dB. Similarly, it can be seen in

Figure 7b how the dynamic range around the fifth resonance

frequency is increased from 0.9 to 26 dB. Due to slight compo-

nent mismatches which leads to a phase mismatch, the

feedthrough is not compensated entirely which can be seen in

the phase response. However, the de-embedded eigenmodes

have enough dynamic range to be suitable for bimodal

AM-AFM imaging as will be discussed in section Bimodal

AFM application.

Sensor sensitivity
The optical lever method measures the bending angle of the

cantilever at the measurement position rather than the displace-

ment [9,31]. As such, the voltage output from the OBD sensor

has to be calibrated individually for each eigenmode in order to

obtain a deflection measurement from the sensor output [32,33],

which is usually done by performing an approach and retract

curve on a stiff sample. Assuming that the z-axis actuator has

been calibrated beforehand, the vibrational inverse optical lever

sensitivity (invOLS) can be found by calculating the slope of

the linear region of the amplitude versus distance curve [32].

While this approach is common practice for the fundamental

mode, it is not feasible for higher eigenmodes, due to their in-
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Figure 8: (a) Voltage noise density estimate of demodulated amplitude obtained from LIA with low-pass filter cut-off frequency of fc = 1 kHz measured
with charge sensor (−) and total integrated noise (−−) of (a.1) first mode and (a.2) fifth mode. (b) Zoom FFT of the deflection estimate on the funda-
mental mode from (b.1) OBD sensor and (b.2) charge sensor with a span of 14.4 kHz around the resonance. Zoom FFT of the deflection estimate on
the fifth mode from (b.3) OBD sensor and (b.4) charge sensor with a span of 14.4 kHz around the resonance.

creased dynamic stiffnesses and associated small free-air ampli-

tudes. As such, the sensor sensitivities are calibrated by com-

paring the sensor outputs for a given drive voltage and compar-

ing it to the displacement measurements obtained from a laser-

doppler vibrometer (LDV) (Polytec MSA-100-3D). For the can-

tilever used in this work and the NT-MDT NTegra AFM

system, the inverse optical lever sensitivity for the first mode

was found to be

(23)

and

(24)

for the fifth mode. Notice, that the sensitivity on the higher

eigenmode is an order of magnitude better than on the funda-

mental mode due to measurement of slope. Similarly, the

inverse charge amplifier sensitivity (invCAS) for the first mode

was determined to be

(25)

Notice, that this value is significantly higher than the one ob-

tained with the OBD sensor but it can be lowered if subsequent

gain stages are employed at the expense of introducing addi-

tional sensor noise. However, on the fifth mode we obtain an

invCAS of

(26)

which is more than two orders of magnitude better than on the

fundamental mode. This highlights the increased deflection to

strain sensitivity on the higher mode which was already noticed

from Figure 6c. On the fifth mode, the strain sensor produces

the same output for a much smaller deflection, yielding a much

larger sensitivity.

Noise analysis
The noise performance of cantilever deflection sensors used in

dynamic AFM is commonly evaluated with the deflection noise

density acquired from thermally induced vibrations. However,

this method is only suitable for the fundamental mode as higher

eigenmode deflections due to Brownian motion decrease

rapidly [34]. For the cantilever used in this work, the thermally

induced vibration amplitude corresponding to the first mode is

below the sensitivity of the charge sensor associated with that

mode. As the use of the charge sensor in amplitude modulation

AFM always requires demodulation, we state the total inte-

grated noise from the voltage noise density (ND) plot and stan-

dard deviation (RMS noise) of the amplitude obtained from a

lock-in amplifier (LIA) (HF2LI Zürich Instruments) and

compare the measurements with the OBD sensor. The cantile-

ver is actively driven at each mode, resulting in a deflection of

253 nm on the first mode and 1.62 nm on the fifth mode. A

4th-order low-pass filter with cut-off frequency of fc = 1 kHz is

used in the LIA. The ND estimates are shown in Figure 8a

which are obtained from the time-domain demodulated ampli-

tude signals sampled at 28.8 kHz using Welch’s segment aver-

aging estimator with 8 sections windowed with the Hamming

window. The results are summarized in Table 2.
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Table 2: Noise performance of OBD and charge sensor.

OBD M1 CA M1 OBD M5 CA M5

ND [μV/√Hz] 0.90 0.22 0.70 0.21
ND [fm/√Hz] 585 1940 30.2 9.91
RMS [μV] 30.3 7.20 23.5 6.91
RMS [pm] 19.6 64.8 1.01 0.33

It can be noticed, that the charge sensor shows a lower voltage

noise density, but it is inferior to the OBD sensor on the funda-

mental mode due to the low deflection to strain sensitivity.

However, on the fifth mode the large increase in sensitivity

results in a deflection noise density of only 9.91 fm/√Hz and

RMS noise of 0.33 pm from DC to the equivalent noise band-

width of the LIA low-pass filter. The values on the funda-

mental mode are higher than the ones reported for optimized

OBD sensor systems using thermal deflection noise density

[11]. This is due to the lower sensitivity of the sensor at that

mode and the fact that the cantilever is actively driven at reso-

nance. However, the authors believe that the procedure is closer

to the actual dynamic AFM application (using lock-in demodu-

lation of actively driven cantilevers) and therefore the values re-

ported are a realistic representation of values obtained during

AFM imaging. To qualify the resolution of the overall AFM

system, a noise image with the actively driven cantilever in con-

tact with the sample surface should be acquired [35] which

takes into account all contributing noise processes.

Additionally, the signal-to-noise-ratio (SNR) is determined

from narrowband demodulation (ZoomFFT, HF2LI Zürich

Instruments) at a frequency span of 14.4 kHz around the reso-

nance frequency of interest. The results for driving the funda-

mental mode at an amplitude of 253 nm are presented in

Figure 8b.1 and Figure 8b.2, yielding a SNR of the OBD sensor

of 122.4 dB and of the charge sensor of 120.0 dB. The results

for driving the fifth mode at an amplitude of 1.62 nm are

presented in Figure 8b.3 and Figure 8b.4 yielding a SNR of the

OBD sensor of 102.8 dB and of the charge sensor of 110.9 dB.

The SNR has been calculated from the difference between the

fitted noise floor and the peak at the signal of interest.

Maximum signal levels have been shifted to 0 dB and the hori-

zontal blue line indicates the fitted noise floor.

Bimodal AFM application
Experimental setup
The experimental setup consists of an unaltered NT-MDT

NTegra Prima AFM fitted with a custom cantilever holder to

mount the piezoelectric cantilever used in this work. The signal

access module (SAM) of the AFM provides the relevant inputs

and outputs to change the feedback signal from the OBD sensor

measurement to charge measurement. Approach and retract

curves as well as all AFM imaging data were recorded using

two synchronized Zürich Instrument HF2LI lock-in amplifiers

for which custom imaging scripts were written. Therefore, it is

possible to obtain AFM images relating to either sensor while

z-axis feedback is performed on one specific sensor.

The samples under investigation are a TGZ1 silicon calibration

grating available from NT-MDT with periodic rectangular fea-

tures of heights h = 21.6 ± 1.5 nm and a blend of polystyrene

(PS) and polyolefin elastomer (ethylene-octene copolymer)

(LDPE) available from Bruker (PS-LDPE-12M). The PS

regions of the sample have elastic modulus numbers around

2 GPa, while the LDPE regions have elastic modulus numbers

around 0.1 GPa making it a widely used standard to image ma-

terial contrast. The scan speed was set to 20 μm/s at an area of

10 μm × 10 μm.

Approach curves
Approach and retract curves have been performed on the (stiff)

TGZ1 calibration grating where the fundamental and the fifth

modes are actively driven and the amplitude of the fundamental

mode obtained from the OBD sensor is used for z-feedback. As

can be seen from Figure 9a,b,e,f, the fundamental and higher

eigenmode amplitudes measured with either OBD sensor or

charge sensor show a similar trend for small drive voltages

(free-air amplitudes) which resembles approach and retract

curves in one of the two stable branches of the cantilever [36].

However, when the drive voltage of the fundamental mode is

increased, the approach curve is characterized by the well

known transition between the low and high amplitude branch as

can be seen in Figure 9c and Figure 9g. It is worth noting that

for this case, the fifth mode amplitudes obtained from the OBD

sensor and from the charge sensor form a hysteresis loop and

more significantly show inverse behavior for small separations

(compare Figure 9d and Figure 9h). As such, the deflection of

the fifth mode increases and the strain decreases when the canti-

lever oscillation state jumps from one amplitude branch into the

other.

Imaging TGZ1 calibration grating
The TGZ1 calibration grating was imaged alternating between

the OBD sensor and the charge sensor as the topography feed-

back signal in order to verify the suitability of imaging with

charge. It can be seen from Figure 10 that due to the excellent

SNR of the charge sensor the topography obtained from either

of the two methods yields identical quality. Moreover, it can be

noted that for stiff samples like the TGZ1, the overall conserva-

tive interactions result in no difference between the amplitude

of the actual feedback signal and the auxiliary signal (compare

Figure 10b with Figure 10c and Figure 10e with Figure 10f).
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Figure 9: Approach (red, −) and retract (blue, −) curves obtained on a TGZ1 calibration grating with OBD sensor used for feedback: (a)–(d) funda-
mental and fifth mode amplitude measured with the OBD sensor and (e)–(h) fundamental and fifth mode amplitude measured with the charge sensor.

Figure 10: AFM Experiment on a TGZ1 calibration grating showing the 3D images of topography and fundamental mode amplitudes for (a)–(c) using
the OBD sensor for feedback and (d)–(f) the charge sensor for feedback. Note, the respective auxiliary signal plotted in the third column shows no
difference to the feedback signal plotted in the second column.

For both experiments, the interaction was mostly attractive as

can be seen from the fundamental mode phase image (not

shown) and only shows repulsive interaction at the rising edges

of the features.

Bimodal AFM on PS/LPDE
A two component polymer as described in section Experimen-

tal setup was imaged using bimodal AFM, i.e., by actively

driving the first and fifth eigenmodes of the piezoelectric canti-

lever. While the z-axis feedback controller maintains a constant

amplitude at the fundamental frequency by commanding the

z-actuator, the higher mode is left uncontrolled and can respond

freely to sample features. As such, the higher eigenmode phase

contrast is often used to distinguish between material properties

[37]. The experimental results are presented in Figure 11; a

plane level algorithm has been applied to the topography

images. The first row represents a bimodal experiment with the

OBD sensor and the second row shows bimodal imaging of the

same area with the charge sensor. For clarity, the phase of

the first and fifth modes for each sensor have been shifted such

that  and as such 

indicates a net attractive imaging regime and 

indicates a net repulsive imaging regime. We note that the first

mode interaction using either sensor is attractive on the LPDE

islands and repulsive on the surrounding PS matrix. In contrast,

the fifth mode interaction is consistently attractive across both
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Figure 11: Bimodal experiment with the first and fifth eigenmode of the piezoelectric cantilever on a PS/LPDE sample showing amplitude in [nm] and
phase in [°] using (a)–(e) the OBD sensor and (f)–(j) the charge sensor. Note the contrast reversal of the amplitude of the fifth mode between the OBD
and charge sensor.

features with either sensor. A clear contrast between the two

polymer regions can be observed in the fifth mode phase image

for either sensor. Comparing the amplitude image on the fifth

mode, the contrast reversal discussed in section Approach

curves is clearly visible.

Conclusion
Experimental results using monomodal and bimodal atomic

force microscopy with the first and fifth eigenmode of a piezo-

electric cantilever on a variety of samples validate that the self-

sensing scheme proposed in this work achieves remarkable

signal-to-noise ratios and can therefore be used to provide both

the feedback signal for topography imaging on the fundamental

mode and phase imaging on the higher eigenmode. The charge

sensor as well as the feedthrough compensation are imple-

mented in analog using high-bandwidth surface mount compo-

nents. In this approach, due to small circuit mismatches, the

feedthrough has to be canceled for each mode separately to

achieve the best dynamic range which is necessary for tapping-

mode AFM. The inherent self-sensing capability of a single

piezoelectric layer enables the omission of the commonly used

optical lever method, promoting the potential downsizing of an

AFM. In future work, the authors aim to extend this work to the

point where quantitative material properties can be extracted

using a multimode charge sensor. Furthermore, we aim to

implement an automatic feedthrough compensation scheme

using disturbance observer concepts which would eliminate the

need for individual analog compensation circuits. Lastly, we

note that not all eigenmodes are equally observable with the

present cantilever geometry and location of the piezoelectric

layer. In order to observe a specific higher eigenmode, a modal

optimization routine should be employed which places indi-

vidual piezoelectric transducers at locations where that mode

shows a uniform and maximum strain distribution. Therefore,

future work will aim at exploring optimal cantilever geometry

and piezoelectric layer layout to maximize the deflection to

strain sensitivity at each mode.
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