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ABSTRACT
We present an analysis and a systematic design methodology for a novel nonraster scan method based on a rosette pattern and demonstrate its
application in video-rate atomic force microscopy. This pattern is traced when the lateral axes of a parallel kinematic scanner are commanded
to follow a combination of two sinusoids with identical amplitudes and different frequencies. We design an internal-model-based controller
to enhance the tracking performance of this pattern and implement the scheme on a microelectromechanical system scanner. The results
reveal high-precision tracking of the rosette pattern in order to acquire time-lapsed atomic force microscope images at the rate of 10 frames/s.
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I. INTRODUCTION

The atomic force microscope (AFM) is widely used in science
and technology for interrogation and manipulation of matter at the
nanoscale.1–4 The traditional method of scanning in AFM is based
on rastering in which one lateral axis of the positioner is made to
follow a triangular or sawtooth signal, while the other axis follows
a ramp or staircase setpoint. Data are collected over a grid as the
positioner sweeps the imaging area with constant linear tip velocity.5
Due to the infinite number of harmonics in the triangular wave,6 the
functionality of this method is only satisfactory at low-speed scans.
Even though several approaches have been developed to improve
the tracking performance of raster scanning,5,7 achieving acceptable
responses in video-rate imaging becomes quite challenging.

To overcome the scan speed restrictions inherent to raster-
ing, nonraster scan methods such as spiral,8–10 Lissajous,11,12 and
cycloid13,14 scan patterns have been proposed to enable high-speed
imaging in AFM. Tracking harmonic waveforms that produce these
nonraster patterns requires far less bandwidth compared with ras-
tering, and this enables much higher scan speeds.

To implement each nonraster scan method, a number of issues
need to be addressed. For example, a constant angular veloc-
ity (CAV) spiral can be generated by commanding the lateral
axes of a scanner to follow sine and cosine waves with identical

frequencies and slowly increasing amplitudes.9,15 Alternatively, to
trace a constant linear velocity (CLV) spiral, the frequency and
amplitude of the sinusoidal setpoints are varying simultaneously.15,16

Although the linear speed of the AFM probe tip in a CLV spiral
trajectory is constant leading to a great homogeneity of data distri-
bution, the scan frequency approaches infinity at the image center
complicating the accurate tracking of this pattern. In a CAV spi-
ral, on the other hand, the linear tip velocity increases in tune with
the radius of the scan, leading to the requirement for a very high-
bandwidth z-axis nanopositioner, if video-rate AFM imaging is the
ultimate goal. To overcome these constraints, an optimal spiral tra-
jectory is proposed in Ref. 16 that combines the advantages of both
CAV and CLV spirals.

Cycloid and Lissajous trajectories are two other patterns used in
nonraster scan atomic force microscopy. The cycloid pattern gradu-
ally moves forward with a fixed pitch, making it suitable for tracking
stringlike samples such as the DNA.17 To generate this pattern, one
axis of the nanopositioner follows a cosine wave, while the other axis
tracks a sine wave superimposed on a ramp signal. In the Lissajous
trajectory, on the other hand, the in-plane axes of the nanopositioner
are driven by pure sinusoids with constant amplitudes. A slight dif-
ference between the phase and frequency of sinusoids can generate
various Lissajous patterns with rectangular-shaped scan areas. Lis-
sajous is a self-repeating pattern and can be employed in sequential
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scanning. However, this scan pattern traverses the entire scan area
in a half period and repeats itself in reverse during the second half
period.11 Therefore, the tip experiences opposite velocities in two
consecutive frames. Moreover, in the Lissajous pattern, the largest
distance between two scan lines occurs at the center of scan area,11

meaning that Lissajous fails to prioritize the features at the center.
In this paper, we propose a new nonraster scan method. The

idea is to design and implement a smooth trajectory whereby
sequential AFM imaging can be performed continuously without
the need for a high-bandwidth tracking controller. Nonraster scans
based on cycloid and spiral patterns must be performed in a sequen-
tial manner for video-rate imaging, meaning that the nanoposi-
tioner is required to alternately move forward/outward and back-
ward/inward to produce multiple frames.14 This type of motion can
induce large tracking errors due to the sharp transitions at the edge
of scan area. The scan trajectory proposed here, however, does not
require back and forth motions to achieve sequential scanning. The
proposed pattern intersects itself at specific points creating curvi-
linear rhombus interstices. These self-intersections of large tem-
poral separation provide information that may be used to detect
and remove height drift in AFM images in a manner similar to
Ref. 18.

In the remainder of the paper, we present a rigorous math-
ematical analysis of the nonraster pattern and derive closed-form
formulas to determine the scan time and resolution. In addition,
we state a step-by-step procedure for designing the pattern based
on the desired scan parameters. We use a two degree-of-freedom
(2-DOF) microelectromechanical system (MEMS) nanopositioner19

together with damping and internal-model-based feedback con-
trollers to implement this nonraster method and achieve video-rate
AFM scans at the rate of 10 frames per second (fps).

II. THE ROSETTE PATTERN
Among the closed plane curves, hypotrochoids and epitro-

choids belong to the large family of roulettes.20 When the centers
of two tangent circles are located on the same side of a common tan-
gent line and one circle remains fixed with the second circle rolling
around the first, a point on the diameter of the rolling circle traces
a hypotrochoid. If both centers are on opposite sides, a point on the
diameter of the rolling circle traces an epitrochoid.21 A rosette is an
epitrochoid where the distance between the center of the rolling cir-
cle and the rotating point is equal to the sum of the radii of the fixed
and rolling circles. Assuming a circular-shaped area with a radius of
R, a rosette pattern can be generated when the x and y axes are made
to trace the following set points:

x = R cos(nθ) cos(θ),

y = R cos(nθ) sin(θ).
(1)

Here, θ = 2πft determines the angle and f is the fundamental scan
frequency, which determines the scanning time. In general, n can be
selected as an integer, rational, or irrational number which leads to
distinct rosette shapes as shown in Fig. 1. The number of petals in
a rosette pattern depends on n. For instance, a rosette has 4 petals
with n = 2 and 8 petals if n = 0.8. However, selecting an irrational
n results in an infinite number of petals as shown in Fig. 1(d). To
ensure that the rosette pattern can cover the entire circular scan area

FIG. 1. Rosette patterns with (a) n = 4/5, (b) n = 3/4, (c) n = 2, and (d) n =
√

2.

with a definite number of petals, we choose n as the rational number,

n =
N

N + 1
, N ∈ {2, 4, . . . , 2k, . . .}. (2)

Here, N is an even integer. For small odd values of N, the rosette
pattern does not reach the top and bottom boundaries of the scan
window as shown in Fig. 1(b). For large values of N, however, there
is no significant difference between the rosettes with odd or even
values of N.

A. Analysis of the rosette pattern
In this subsection, we present a detailed analysis of the rosette

pattern resulting in a closed-form expression for the scan resolution.
According to Eq. (1), x and y reference signals can each be expressed
as the sum of two sinusoids as

x =
R
2
{cos[(1 + n)θ] + cos[(1 − n)θ]},

y =
R
2
{sin[(1 + n)θ] + sin[(1 − n)θ]}.

(3)

Therefore, the reference signal of each axis contains a high
frequency sinusoid superimposed on a low frequency one and the
reference frequencies can be determined from

f1 = (1 + n)f ,
f2 = (1 − n)f .

(4)

The rosette is a periodic pattern because it repeats itself over a
certain time interval. In Appendix A, we show that x and y have iden-
tical periods and the pattern period (T) is the least common multiple
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FIG. 2. (a) Three successive petals in a rosette pattern are
shown by different colors. The tangential distance (TD) and
radial distance (RD) in a rosette pattern generate a curvilin-
ear rhombus (colored in gray). (b) Concentric circles cross-
ing the intersections in a rosette pattern with R = 3 µm,
N = 4, and T = 1 s. The intersections and edge points are
shown by × and ∗, respectively.

(LCM) of all individual periods of the reference terms, i.e.,

T =
N + 1
f

. (5)

As shown in Fig. 1, the number of petals depends on the value
of n. Since n is selected as a rational number in Eq. (2), the num-
ber of petals in the proposed scan pattern is 2N; see Appendix B.
The pattern symmetry indicates that the petals intersect not only at
the origin but also at their midlines as well as at the bisector of two
consecutive midlines.21 The number of midlines or bisectors is sim-
ilar to the number of petals in the pattern. Figure 2(a) shows the
intersections of three successive petals along with their midlines and
bisectors. In the rosette pattern, the intersections lie on N concen-
tric circles as depicted in Fig. 2(b). The intersections that are close to
the periphery are located on the first circle, and the ones close to the
origin remain on the Nth circle. Apart from the intersections at the
center of the pattern, the scan lines intersect 2N2 times in a rosette
pattern.

To determine the radius of each concentric circle, the smallest
polar angle where the first crossing point occurs at the correspond-
ing circle can be obtained as

θi = iπ(1 +
1

2N
), i ∈ {1, 2, . . . ,N}. (6)

As shown in Fig. 3, θ1 to θ4 contribute to the polar angles of the
first crossing points laid on different concentric circles. As is clear,

θ1 to θ4 alternately determine the bisectors and midlines of petals in
the pattern. Therefore, knowing θi enables us to obtain the radius of
each concentric circle using Eq. (1), as follows:

ri = R cos(nθi), i ∈ {1, 2, . . . ,N}. (7)

With the radius of concentric circles known, we can determine
the in-plane imaging resolution. The scan resolution can be defined
as the largest distance between two nearby scan lines. This definition
is valid provided that the sampling frequency is high enough so that
the distance between two successive sampled points remains much
smaller than the distance between scan lines. To obtain a measure
for resolution, we seek the largest square-shaped area in the pattern
which encompasses no data point. To do this, we first need to define
the tangential distance (TD) and the radial distance (RD) between
two crossing points shown in Fig. 2(a). TD is the arc length between
two consecutive crossing points on a circle and is determined by
the radius of the circle and the angle between the crossing points.
Therefore, this distance is similar for all the crossing points lying on
the same circle. The minimum value of TD occurs around the ori-
gin and increases to its maximum value at the largest circle close to
the periphery of the pattern. The radial distances (RD), on the other
hand, are categorized into two classes. The first one is the distance
between every other consecutive circles, and the second is the radii
of the last two concentric circles around the origin. We acquire RD
and TD as

FIG. 3. Smallest polar angles θ1 to θ4 which determine the first intersections on the concentric circles in a rosette pattern with R = 3 µm and N = 4.
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RDk+1 = rk − rk+2, k = 0, . . . ,N,

TDk+1 = rk+1(
π
N
),

(8)

where rk denotes the radius of the kth concentric circle in the pat-
tern, r0 = R, and rk>N = 0. As shown in Fig. 2(a), the crossing points
form a curvilinear rhombus, with TD and RD being the diagonals.
The area of rhombus varies as we move away from the origin. The
maximum area occurs on the central concentric circles and decreases
symmetrically toward either sides. Therefore, the largest area and,
consequently, the image resolution can be obtained by finding the
rhombus with the largest area in the pattern. Here, the distance
between two adjacent scan lines is also maximum. In Appendix C,
we show that the largest area occurs at the two central circles, i.e.,
k = {(N/2), (N/2) + 1}, and the resolution can be expressed by

P ≈
Rπ
2N

. (9)

Note that in our previous work,22 the rosette resolution was
introduced as the largest distance between the crossing points
occurred on the outermost concentric circle leading to a resolution
twice of P. This definition leads to excessive data points accumulated
at the peripheries with minimal contribution to the image quality
over the scan area.

To create an image of nonraster sampled data, an interpolation
technique such as the Delaunay triangulation is employed.23 In this
method, the scan area is subdivided into small triangles with vertices
obtained from the sampled data to generate a triangular mesh; then,
the height of unknown data points is approximated from the known
data points to create a 3D image. For instance, Fig. 4 shows a rosette
pattern sampled data and its 2D Delaunay triangulation. We observe
that the largest triangles are located on the central concentric circles
of the rosette pattern which aligns with our definition of resolution.

B. Properties of the rosette pattern
The rosette pattern is highly suitable for sequential scanning

of circular-shaped areas because it allows AFM imaging to be

FIG. 4. Rosette sampled points (red dots) and Delaunay triangles (blue triangles).
R = 0.5 µm, P ≈ 100 nm, T = 1 s, and fs = 288 Hz.

performed continuously without the usual requirement for a high-
bandwidth tracking controller. Furthermore, tracking of this scan
pattern is straightforward and intuitive since the reference signals
are harmonic waveforms.

Considering the reference signals in Eq. (3), the linear tip
velocity, v =

√
ẋ2 + ẏ2, is obtained as

v = 2πRf
√

1 + (n2 − 1) sin2(2πnft). (10)

According to Eqs. (2) and (9), for high-resolution AFM imaging
with the rosette pattern, N becomes large, while n approaches unity.
Hence, (n2

− 1) sin2(2πnft)≪ 1 and the tip velocity in Eq. (10) can
be approximated by

v ≃ 2πRf . (11)

We observe that the linear tip velocity is approximately con-
stant throughout a scan. Using Eq. (10) and knowing n < 1, the
maximum tip velocity is obtained as vmax = 2πRf when sin(2πnft)
= 0. Figure 5(a) shows the absolute linear tip velocity at 10 fps. A
slight velocity deviation (about 0.5%) is observable in this pattern.
Figure 5(b) presents the tip velocity variation as a function of the
number of concentric circles (N). Clearly, the tip velocity variation
is negligible for larger values of N.

The maximum tip velocity is one of the factors which deter-
mines the required bandwidth of the z-axis nanopositioner in AFM

FIG. 5. (a) Tip velocity of a rosette pattern when R = 3 µm, P = 25 nm, and the scan
time is 0.1 s. (b) Variation of velocity in a rosette pattern with different numbers of
concentric circles (N). Here, ∆v = vmax − vmin and vavg denotes the average tip
velocity.
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TABLE I. The scan frequency and maximum tip velocity for rosette, Lissajous, CAV
spiral, cycloid, and raster methods considering fixed scan area, resolution, and scan
time.

Scan Maximum
Scanning method frequency (Hz) velocity (mm/s)

Rosette f1 = 3770 35.62f2 = 10

Lissajous11 fx = 2360 55.69fy = 2355
CAV spiral16 1190 22.62
Cycloid14 1610 20.17
Raster24 2127 22.62

imaging. Table I compares the maximum tip velocity and the corre-
sponding scan frequency in rosette, raster, and conventional non-
raster scan patterns. The velocities are obtained assuming similar
scan area, resolution, and scan time based on the rosette scan param-
eters, i.e., R = 3 µm, P = 25 nm, and Tscan = 0.1 s. Although the
maximum tip velocity with the rosette pattern is larger than the
one with the raster, cycloid, and CAV spiral, it is still about 36%
smaller than that of the Lissajous trajectory. This means that the
rosette pattern requires a lower bandwidth for the z-axis nanopo-
sitioner to scan the same area at a similar imaging frame rate.
We also observe that the tip velocity and reference frequency with
rastering are lower than the ones in rosette scanning. However,
a high-bandwidth in-plane nanopositioner is required to track a
triangular wave at 2127 Hz with sharp apices due to its infinite
number of odd harmonics. The presented nonraster scan methods,
although demonstrating a lower tip velocity, suffer from other draw-
backs such as tip velocity fluctuations and noncontinuous sequential
imaging.

In the rosette pattern, the curvilinear rhombi located on the
central concentric circles have equal length sides which vary as we
move away to either side of these circles.25 In addition, the length
of the diagonals of rhombi alters based on the radii of concentric
circles. With a large number of petals, the number of concentric
circles increases and most of the rhombi have equal length sides
and diagonals. In this case, the diagonals can be considered as the
tangential and radial distances as the curvilinear rhombi resemble
flat diamonds. To describe how the shape of a curvilinear rhombus
changes in the pattern while moving through the concentric cir-
cles from periphery to the origin, we define the ratio of tangential
distance (TD) to the radial distance (RD) as

αi =
TDi

RDi
, i ∈ {1, 2, . . . ,N}. (12)

Since TD and RD change oppositely from the origin to the
periphery, αi varies in the pattern in accordance with the concentric
circles. As demonstrated in Fig. 6, the rhombi have similar shapes on
the majority of concentric circles as αi/αi+1 remains almost unity on
these circles.

C. Design procedure for rosette scanning
In high-speed AFM imaging, the frame rate and resolution are

the key parameters of the scan pattern. Here, the following design

FIG. 6. Ratio of aspect ratios with respect to the concentric circles in a rosette
pattern when R = 3 µm, P = 25 nm, and the scan time is 0.1 s.

procedure is proposed to generate a rosette pattern based on a given
scan area, resolution and imaging frame rate:

1. Assuming R is the radius of the circular-shaped scan window,
the amplitude of the reference sinusoids is R/2.

2. For a desired scan resolution, the integer N is obtained from
Eq. (9) by rounding Rπ

2P to the nearest even integer. Then, n is
calculated from Eq. (2).

3. Knowing the imaging frame rate or the scan period T, the
fundamental scan frequency f is obtained from Eq. (5).

4. Finally, having the fundamental frequency and the rational
number n, the reference frequencies f1 and f2 are determined
from Eq. (4).

Remark. The sampling frequency for imaging should be large
enough to ensure that the distance between two data points located
on the same scan line is much smaller than the selected resolution in
the pattern. Assuming P is the resolution, fs is the minimum sam-
pling frequency, and vmax is the maximum in-plane tip velocity in the
rosette pattern, the sampling frequency should meet the following
criterion:

fs ≥
vmax

P
= 4f N. (13)

Accordingly, the data acquisition device should capture data as fast
as fs, so as the image resolution in Eq. (9) to be still valid.

III. EXPERIMENTS
We performed experiments in closed loop to generate sequen-

tial AFM imaging at 10 fps. In all experiments, a dSPACE rapid
prototyping system running at a sampling frequency of 90 480 Hz is
employed to generate the reference signals and implement the track-
ing controllers. We design the pattern to allow for a scan radius of
R = 3 µm and a resolution of P = 25 nm. According to Eq. (9), N
is obtained as 188. The reference frequencies for both in-plane axes
corresponding to this frame rate are 3770 Hz and 10 Hz.

A. MEMS nanopositioner
A 2-DOF MEMS nanopositioner is used to implement the

rosette scanning. The device is fabricated using the MEMSCap’s
SOIMUMP process, and it comprises electrostatic actuators for lat-
eral positioning and bulk piezoresistive sensors to measure the dis-
placement of the scan table, as depicted in Fig. 7. For further details,
the readers are referred to Refs. 19 and 26. As shown in Fig. 7, gold
features with the thickness of 520 nm are fabricated on the scan table.
These features are later used as reference patterns for AFM imag-
ing experiments. The measurement resolution of the piezoresistive
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FIG. 7. SEM image of the MEMS nanopositioner. The close-up views show differ-
ent components of the device. The scan table at the center has the dimensions
of 1.8 mm × 1.8 mm. The dimensions of the square-shaped gold patterns on the
stage are also shown in the close-up view.

sensors is previously demonstrated to be about 2 nm within the
sensing bandwidth of 30 kHz.14

The characterization of the nanopositioner is performed using
a Polytec MSA-100-3D Micro System Analyzer (MSA). The nanopo-
sitioner shows a first resonance frequency of 3538 Hz and 3559 Hz
along the x and y axes, respectively.

The displacement range of the nanopositioner is about 15 µm.
In the experiments, however, the stroke is limited to 10.70 µm and
10.65 µm along x and y axes, respectively, to stay within a more
linear range. By simultaneously recording the sensors’ output, cal-
ibration factors of 0.219 V/µm and 0.222 V/µm are obtained for x
and y sensors, respectively.

The device shows a lightly damped behavior along both axes,
making the system prone to external disturbances and vibrations.
Therefore, the damping controller previously proposed in Refs. 10
and 27 is also implemented for both axes as shown in Fig. 8. By
implementing the damping controller, the 2% settling time of the
system is decreased to less than 0.5 ms, while the 3 dB-bandwidth of
the device is also improved to 4.5 kHz along both directions. The
tracking controller is designed for the damped nanopositioner as
explained next.

B. Internal-model-based controller
The internal-model-based controller is an effective method for

tracking reference signals with known dynamics.28 According to the

FIG. 8. Block diagram of the closed-loop system in the x axis. The same scheme
is used in the y axis.

internal model principle, if the controller incorporates the reference
generating polynomial, the system can robustly track the reference
signals.28 Furthermore, the steady state tracking error asymptotically
approaches zero when the internal model of the reference signal and
deterministic disturbances are included in the controller.29 Here,
the reference signals are pure sinusoids; hence, the internal-model-
based controller can improve the tracking performance by including
the reference harmonics. This controller also restricts the closed-
loop bandwidth, preventing the projected sensor noise from affect-
ing the tracking performance of the nanopositioner.30 As previously
discussed in Ref. 14, to reject the undesirable harmonics appear-
ing in the tracking error due to system nonlinearities, we design
the controllers to incorporate pure imaginary poles corresponding
to the reference frequencies and their harmonics. This leads to the
following controller:

C(s) =
K0

s
+

2
∑
ℓ=1

C1ℓ(s) +
3
∑
p=1

C2p(s), (14)

where

C1ℓ(s) = K1ℓ
s − z1ℓ

s2 + (ℓω1)2 ,

C2p(s) = K2p
s − z2p

s2 + (pω2)2 .
(15)

A schematic of the x-axis closed-loop system incorporating this
controller is depicted in Fig. 8. The same control scheme is also
applied to the y axis. Controller zeros at each reference frequency
are empirically adjusted to achieve high performance tracking. Fur-
thermore, controller gains are tuned to provide stability margins of
approximately 16.6 dB and −81.5○ for the x axis and 17.5 dB and
82.3○ for the y axis. It is worth noting that the internal model of
the third harmonic of f 1 is not included in the controllers. The pri-
mary reason being that the third harmonic is beyond the bandwidth
of the damped system at higher frame rates and its effect becomes
insignificant in the tracking error due to the system frequency
response roll-off. In addition, including more harmonics in the con-
troller will increase its order, making its real-time implementation
challenging.

C. Experimental results
We performed tracking experiments in a closed loop with the

internal-model-based controllers described above. As illustrated in
Figs. 9(a) and 9(b), the lateral axes of the nanopositioner accurately
track the reference signals. The close-up views of the x and y tracking
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FIG. 9. Close-up views of reference signals and displacement in (a) x and
(b) y axes. R = 3 µm, P = 25 nm, and the frame rate is 10 fps. Close-up views
of the tracking error in (c) x and (d) y axes. Red curves show the actual error, and
black curves are the filtered error.

errors in Figs. 9(c) and 9(d) reveal the efficacy of incorporating the
internal modes of the reference signals and their harmonics in the
controller.

The tracking error contains stochastic and deterministic com-
ponents. In this work, the deterministic component appearing as
harmonics in tracking error is minimized using the internal-model-
based controller. Amplifier noise, sensor noise, and external dis-
turbances all contribute to the stochastic component of the stage
tracking error. We attempted to minimize the last two sources of
stochastic noise by performing the experiments in a closed metal box
and on an optical table.

As depicted in Fig. 8, the sensor noise is fed back to the sys-
tem appearing as the projected noise at the stage displacement out-
put. During the control design, this projected noise is minimized by
using a damping controller with a high-pass profile as well as using
a tracking controller with a limited bandwidth. For instance, the
closed-loop bandwidth of the tracking controller at 10 fps is approx-
imately 1 Hz. The high-pass damping loop reduces the effect of 1/f
noise inherent to the piezoresistive sensors.26

The sensor data are filtered using a Kaiser window low-pass
filter with a cut-off frequency of 15 kHz and a stop band atten-
uation of 60 dB. Figures 9(c) and 9(d) show the filtered error in
each axis. The reference and actual trajectories obtained from the fil-
tered sensor data for one scan period are depicted in Fig. 10(c). The
close-up view of the actual position and the reference trajectory in
Fig. 10(d) clearly shows that the scan lines precisely follow the rosette
pattern.

The root mean square (rms) values of the original and filtered
tracking errors at 10 fps along with the percent error with respect
to the scan diameter are stated in Table II. The rms values indicate
that the system satisfactorily tracks the reference signal owing to the
internal-model-based controller. The peak to peak value of tracking

FIG. 10. Reference signal and displacement in one scan interval in (a) x and (b) y
axes. R = 3 µm, P = 25 nm, and the frame rate is set to 10 fps. (c) Reference and
actual trajectory. (d) Close-up view of the reference and actual trajectory.

error in both axes is calculated to be about 20 nm, which is obtained
at the ±2σ level. This measure is reliable with 95.4% certainty, con-
sidering a normal distribution of the tracking error. Note that the
images are generated based on the sensor data not the reference sig-
nals. Hence, the tracking error will not be reflected into the image.
However, if the error exceeds the pattern resolution, the trajectory
will be slightly distorted and the tracking error will determine the
actual resolution of the image.

D. Sequential AFM imaging
To evaluate the performance of the closed-loop positioning sys-

tem with the rosette pattern, we acquired a series of AFM images
at the high frame rate of 10 fps. For this purpose, we used the
MEMS nanopositioner described above as the scan stage mounted
within an AFMWorkshop TT-AFM. Figure 11 shows the experi-
mental setup including the AFM, the MEMS nanopositioner, and
a printed circuit board (PCB) which provides the sensing and actua-
tion signal paths. A series of periodic gold patterns with the dimen-
sions of 4 × 4 × 0.5 µm3 fabricated on the stage were utilized
as scan samples. To construct 3D images, the cantilever deflection

TABLE II. Closed-loop rms tracking errors in x and y axes and the error percentage
with respect to the scan diameter at 10 fps.

Original Filtered

(nm) (%) (nm) (%)

X 9.43 0.15 5.10 0.09
Y 8.78 0.16 4.93 0.08
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FIG. 11. Experimental setup for AFM imaging using the
MEMS nanopositioner.

provided by the AFM built-in optical beam detector and in-plane
displacement from the nanopositioner piezoresistive sensors were
simultaneously recorded. Due to the low-bandwidth nature of the
AFM z-axis positioner, the imaging was performed in constant-
height contact mode. Therefore, a contact-mode cantilever was
employed with a resonance frequency of 20.8 kHz and a stiffness of
approximately 0.19 N/m.

In all experiments, initially, the amplitude of x and y sinu-
soids was gradually increased from zero to the maximum displace-
ment corresponding to the scan window radius. Then, imaging was
performed using the rosette pattern, while the MEMS nanoposi-
tioner was slowly moved in the x-y plane by implementing the

raster scanning with the embedded positioner of the TT-AFM at
a low frequency of 0.1 Hz. Therefore, the moving features could
be observed during AFM imaging. Figure 12 illustrates a series of
AFM images obtained at 10 fps while the slowly moving gold fea-
ture is observable in the image. Since the scanning is performed
in constant-height contact mode, the AFM cantilever vibrates as it
experiences sharp transitions at high frame rates. Therefore, some
artifacts appear in the AFM image and degrade its quality. Oper-
ating the AFM in the constant-force mode will address this issue.
That, however, would require a z-axis positioner with a very high
bandwidth that was not available at the time these experiments were
performed.

FIG. 12. A series of video frames (from top-left to bottom-right) of a slowly moving sample. Each frame was captured at 0.1 s equivalent to a video-rate of 10 fps to scan a
circular-shaped area with the diameter of 6 µm by using a commercial AFM operating in a constant-height contact mode.
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IV. CONCLUSION
We proposed a novel nonraster scan pattern for high-speed

AFM imaging. We analyzed the pattern mathematically to derive
a closed-form formula for the scan resolution and determine the
scan parameters according to the scan size and imaging frame rate.
Since the reference signals are a sum of pure sinusoids with constant
amplitude and frequency, tracking of this pattern is straightforward.
We employed an internal-model-based controller that incorporates
the dynamics of the reference signals and undesirable harmonics to
achieve high performance results at 10 fps. This method was satisfac-
torily implemented using a commercial AFM and a MEMS nanopo-
sitioner as the scanning stage, and a sequence of images was acquired
with an AFM operating in the constant-height contact mode. Since
the pattern is periodic, the nanopositioner can traverse the scan
area many times repeatedly without the need for a high-bandwidth
tracking controller. Consequently, the rosette pattern is appropriate
for sequential AFM imaging to interrogate dynamic samples at the
nanoscale.
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APPENDIX A: THE SCAN PERIOD
If p and q are periods of f(x) and g(x), respectively, then, any

common multiple of p and q is a period of f(x) + g(x). Hence, the
least common multiple (LCM) of p and q, if it exists, is a period of
f(x) + g(x). According to this principle, the period of the reference
signals in Eq. (3), i.e., Tx and Ty, can be obtained as

Tx = Ty = LCM{
1

f(1 + n)
,

1
f(1 − n)

}. (A1)

By substituting n from Eq. (2), the period of x, y, and the resulting
pattern is obtained as follows:

T = Tx = Ty = LCM{
N + 1

f(2N + 1)
,
N + 1
f
} =

N + 1
f

. (A2)

APPENDIX B: THE NUMBER OF PETALS
As depicted in Fig. 2, a petal is a part of the rosette pat-

tern surrounding its origin. The petals copy themselves to create a
circular-shaped rosette pattern. The number of petals is related to
the value of n in Eq. (2). To determine the number of petals, we
obtain the duration of time required for a petal to be plotted and
then divide it by the total scan time for the rosette pattern. Accord-
ing to Eq. (1), r = R cos(nθ) in the polar coordinate system. Based
on the definition used here, each petal starts and ends at r = 0, which
happens at the following polar angles:

θk =
(2k + 1)π

2n
. (B1)

Considering θ = 2πft, the difference between two consecutive
θk determines the duration wherein a petal is drawn, i.e.,

tp =
1

2nf
. (B2)

Thus, using Eqs. (2) and (5), the number of petals in one scan
time is

Number of Petals =
T
tp
= 2N. (B3)

APPENDIX C: THE SCAN RESOLUTION
For high resolution rosette scanning, a curvilinear rhombus

resembles a flat diamond; hence, the distance between two adja-
cent scan lines is the altitude of the rhombus as shown in Fig. 13(a).
Therefore, the resolution corresponds to the altitude of rhombi with
the largest area.

The area of a rhombus, A : N→ R, can be obtained as

A(k) =
TDk × RDk

2
, k = 1, . . . ,N, (C1)

where k denotes the kth concentric circle. Assuming A to be affine
on each interval [k, k + 1], we have

A(k + 1) + A(k − 1) − 2A(k)

=
−4πR2

N
sin(

π
2N + 2

) sin(
(2k + 1)π

2N + 2
) < 0, k = 1, . . . ,N,

(C2)

FIG. 13. (a) Close-up view of the rosette pattern around the central concentric
circles. (b) Profile of rhombus area corresponding to the concentric circles in the
pattern when R = 3 µm, P = 25 nm, and the frame rate is 10 fps.
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which proves that A is concave as depicted in Fig. 13(b). To obtain
the largest area with no data point inside, the maximum of A is
acquired at k∗ = (N + 1)/2 by solving A(k) − A(k − 1) = 0. As is also
visible in Fig. 13(b), the closest integer solutions to k∗ are {(N/2),
(N/2) + 1}, representing the two central concentric circles on which
the maximum area occurs. For large values of N, RD and TD at k∗
can be obtained using Eq. (8) as follows:

RD∗ ≈ TD∗ ≈
√

2
2

Rπ
N

. (C3)

According to Fig. 13(a), the altitude of a rhombus is

h =
TD × RD

2
√

( TD
2 )

2 + ( RD
2 )

2
, (C4)

and by substituting Eq. (C3) into Eq. (C4), the resolution is approx-
imated by

P ≈
Rπ
2N

. (C5)
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